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Abstract

This work considers a computationally and statistically efficient parameter estimation method
for a wide class of latent variable models—including Gaussian mixture models, hidden Markov
models, and latent Dirichlet allocation—which exploits a certain tensor structure in their low-
order observable moments (typically, of second- and third-order). Specifically, parameter estima-
tion is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric
tensor derived from the moments; this decomposition can be viewed as a natural generalization
of the singular value decomposition for matrices. Although tensor decompositions are generally
intractable to compute, the decomposition of these specially structured tensors can be efficiently
obtained by a variety of approaches, including power iterations and maximization approaches
(similar to the case of matrices). A detailed analysis of a robust tensor power method is pro-
vided, establishing an analogue of Wedin’s perturbation theorem for the singular vectors of
matrices. This implies a robust and computationally tractable estimation approach for several
popular latent variable models.

1 Introduction

The method of moments is a classical parameter estimation technique [Pea94] from statistics which
has proved invaluable in a number of application domains. The basic paradigm is simple and in-
tuitive: (i) compute certain statistics of the data — often empirical moments such as means and
correlations — and (ii) find model parameters that give rise to (nearly) the same corresponding
population quantities. In a number of cases, the method of moments leads to consistent estima-
tors which can be efficiently computed; this is especially relevant in the context of latent variable
models, where standard maximum likelihood approaches are typically computationally prohibitive,
and heuristic methods can be unreliable and difficult to validate with high-dimensional data. Fur-
thermore, the method of moments can be viewed as complementary to the maximum likelihood
approach; simply taking a single step of Newton-Ralphson on the likelihood function starting from

E-mail: a.anandkumar@uci.edu, rongge@cs.princeton.edu, dahsu@microsoft.com, skakade@microsoft.com,
mtelgars@cs.ucsd.edu
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the moment based estimator [Le 86] often leads to the best of both worlds: a computationally
efficient estimator that is (asymptotically) statistically optimal.

The primary difficulty in learning latent variable models is that the latent (hidden) state of
the data is not directly observed; rather only observed variables correlated with the hidden state
are observed. As such, it is not evident the method of moments should fare any better than
maximum likelihood in terms of computational performance: matching the model parameters to
the observed moments may involve solving computationally intractable systems of multivariate
polynomial equations. Fortunately, for many classes of latent variable models, there is rich structure
in low-order moments (typically second- and third-order) which allow for this inverse moment
problem to be solved efficiently [Cat44, Car91, Cha96, MR06, HKZ12, AHK12, AFH+12, HK12].
What is more is that these decomposition problems are often amenable to simple and efficient
iterative methods, such as gradient descent and the power iteration method.

1.1 Contributions

This work observes that a number of important and well-studied latent variable models—including
Gaussian mixture models, hidden Markov models, and Latent Dirichlet allocation—share a certain
structure in their low-order moments, and this permits certain tensor decomposition approaches
to parameter estimation. In particular, this particular tensor decomposition can be viewed as a
natural generalization of the singular value decomposition for matrices.

While much of this (or similar) structure was implicit in several previous works [Cha96, MR06,
HKZ12, AHK12, AFH+12, HK12], here we make the decomposition explicit under a unified frame-
work. Specifically, we express the observable moments as sums of rank-one terms, and reduce the
parameter estimation task to the problem of extracting a symmetric orthogonal decomposition of
symmetric tensor derived from these observable moments. The problem can then be solved by a
variety of approaches, including fixed-point and variational methods.

One approach for obtaining the orthogonal decomposition is the tensor power method of [LMV00,
Remark 3]. We provide a convergence analysis of this method for orthogonally decomposable sym-
metric tensors, as well as a detailed perturbation analysis for a robust (and a computationally
tractable) variant. This perturbation analysis can be viewed as an analogue of Wedin’s pertur-
bation theorem for singular vectors of matrices [Wed72], providing a bound on the error of the
recovered decomposition in terms of the operator norm of the tensor perturbation. This analysis
is subtle in at least two ways. First, unlike for matrices (where every matrix has a singular value
decomposition), an orthogonal decomposition need not exist for the perturbed tensor. Our robust
variant uses random restarts and deflation to extract an approximate decomposition in a com-
putationally tractable manner. Second, the analysis of the deflation steps is non-trivial; a näıve
argument would entail error accumulation in each deflation step, which we show can in fact be
avoided. When this method is applied for parameter estimation in latent variable models previ-
ously discussed, improved sample complexity bounds (over previous work) can be obtained using
this perturbation analysis.

Finally, we also address computational issues that arise when applying the tensor decomposition
approaches to estimating latent variable models. Specifically, we show that the basic operations of
simple iterative approaches (such as the tensor power method) can be efficiently executed in time
linear in the dimension of the observations and the size of the training data. For instance, in a
topic modeling application, the proposed methods require time linear in the number of words in the
vocabulary and in the number of non-zero entries of the term-document matrix. The combination
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of this computational efficiency and the robustness of the tensor decomposition techniques makes
the overall framework a promising approach to parameter estimation for latent variable models.

1.2 Related work

Tensor decompositions

The role of tensor decompositions in the context of latent variable models dates back to early
uses in psychometrics [Cat44]. These ideas later gained popularity in chemometrics, and more
recently in numerous science and engineering disciplines, including neuroscience, phylogenetics,
signal processing, data mining, and computer vision. A thorough survey of these techniques and
applications can be found in [KB09]. Below, we discuss a few specific connections to two applications
in machine learning and statistics: independent component analysis and latent variable models.

Tensor decompositions have been used in signal processing and computational neuroscience
for blind source separation and independent component analysis (ICA) [CJ10]. Here, statistically
independent non-Gaussian sources are linearly mixed in the observed signal, and the goal is to
recover the mixing matrix (and ultimately, the original source signals). A typical solution is to
locate projections of the observed signals that correspond to local extrema of the so-called “contrast
functions” which distinguish Gaussian variables from non-Gaussian variables. This method can be
effectively implemented using fast descent algorithms [Hyv99]. When using the excess kurtosis (i.e.,
fourth-order cumulant) as the contrast function, this method reduces to a generalization of the
power method for symmetric tensors [LMV00, ZG01, KR02]. This case is particularly important,
since all local extrema of the kurtosis objective correspond to the true sources (under the assumed
statistical model) [DL95]; the descent methods can therefore be rigorously analyzed, and their
computational and statistical complexity can be bounded [FJK96, NR09, AGMS12, HK12].

Another line of works views a tensor decomposition as a simultaneous diagonalization of a
collection of matrices obtained from a tensor. This was employed for parameter estimation of dis-
crete Markov models [Cha96] using pair-wise and triple-wise probability tables. This idea has been
extended to other latent variable models such as hidden Markov models (HMMs), latent trees, Gaus-
sian mixture models, and topic models such as latent Dirichlet allocation (LDA) [MR06, HKZ12,
AHK12, AFH+12, HK12]. Simultaneous diagonalization is also used for many other applications,
including blind source separation and ICA (as discussed above), and a number of efficient algo-
rithms have been developed for this problem [BGBM93, CS93, Car94, CC96, CGT97, ZLNM04].
Another reduction from tensors to matrices called flattening has also been used to solve tensor de-
composition problems via matrix eigenvalue techniques [Car91, DLCC07]. One advantage of these
methods is that they can be used to estimate under-determined mixtures, where the number of
sources is larger than the observed dimension.

The relevance of tensor analysis to latent variable modeling has been long recognized in the field
of algebraic statistics [PS05], and many works characterize the algebraic varieties corresponding to
the moments of various classes of latent variable models [DSS07, SZ11]. These works typically do
not address computational or finite sample issues, but rather are concerned with basic questions of
identifiability.

The specific tensor structure considered in the present work is the symmetric orthogonal de-
composition. This decomposition expresses a tensor as a linear combination of simple tensor forms;
each form is the tensor product of a vector (i.e., a rank-1 tensor), and the collection of vectors form
an orthonormal basis. An important property of tensors with such decompositions is that they
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have eigenvectors corresponding to these basis vectors. Although the concepts of eigenvalues and
eigenvectors of tensors is generally significantly more complicated than their matrix counterpart
(both algebraically [Qi05, CS11, Lim05] and computationally [HL12, KR02]), the special symmet-
ric orthogonal structure we consider permits simple algorithms to efficiently and stably recover the
desired decomposition. In particular, a generalization of the matrix power method to symmetric
tensors, introduced in [LMV00, Remark 3] and analyzed in [KR02], provides such a decomposition.
This is in fact implied by the characterization in [ZG01], which shows that iteratively obtaining
the best rank-1 approximation of such orthogonally decomposable tensors also yields the exact
decomposition. We note that in general, obtaining such approximations for general (symmetric)
tensors is NP-hard [HL12].

Latent variable models

This work focuses on the particular application of tensor decomposition methods to estimating
latent variable models, a significant departure from many previous approaches in the machine
learning and statistics literature. By far the most popular heuristic for parameter estimation for
such models is the Expectation-Maximization (EM) algorithm [DLR77, RW84]. Although EM has
a number of merits, it may suffer from slow convergence and poor quality local optima [RW84],
requiring practitioners to employ many additional heuristics to obtain good solutions. For some
models such as latent trees [Roc06] and topic models [AGM12], maximum likelihood estimation is
NP-hard, which suggests that other estimation approaches may be more attractive. More recently,
algorithms from theoretical computer science and machine learning have addressed computational
and sample complexity issues related to estimating certain latent variable models such as Gaussian
mixture models and HMMs [Das99, AK01, DS07, VW02, KSV05, AM05, CR08, BV08, KMV10,
BS10, MV10, HK12, Cha96, MR06, HKZ12, AHK12, AGM12, AFH+12]. See [AHK12, HK12] for a
discussion of these methods, together with the computational and statistical hardness barriers that
they face. The present work reviews a broad range of latent variables where a mild non-degeneracy
condition implies the symmetric orthogonal decomposition structure in the tensors of low-order
observable moments.

Notably, another class of methods, based on subspace identification [OM96] and observable
operator models/multiplicity automata [Sch61, Jae00, LSS01], have been proposed for a number
of latent variable models. These methods were successfully developed for HMMs in [HKZ12], and
subsequently generalized and extended for a number of related sequential and tree Markov models
models [SBG10, Bai11, BSG11, PSX11, FRU12, BQC12, BM12], as well as certain classes of parse
tree models [LQBC12, CSC+12, DRC+12]. These methods use low-order moments to learn an
“operator” representation of the distribution, which can be used for density estimation and belief
state updates. While finite sample bounds can be given to establish the learnability of these
models [HKZ12], the algorithms do not actually give parameter estimates (e.g., of the emission or
transition matrices in the case of HMMs).

1.3 Organization

The rest of the paper is organized as follows. Section 2 reviews some basic definitions of tensors.
Section 3 provides examples of a number of latent variable models which, after appropriate manip-
ulations of their low order moments, share a certain natural tensor structure. Section 4 reduces
the problem of parameter estimation to that of extracting a certain (symmetric orthogonal) de-
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composition of a tensor. We then provide a detailed analysis of a robust tensor power method
and establish an analogue of Wedin’s perturbation theorem for the singular vectors of matrices.
The discussion in Section 6 addresses a number of practical concerns that arise when dealing with
moment matrices and tensors.

2 Preliminaries

A real p-th order tensor A ∈ ⊗p
i=1R

ni is a member of the tensor product of Euclidean spaces
Rni , i ∈ [p]. We generally restrict to the case where n1 = n2 = · · · = np = n, and simply write
A ∈⊗p

Rn. For a vector v ∈ Rn, we use v⊗p := v ⊗ v ⊗ · · · ⊗ v ∈⊗p
Rn to denote its p-th tensor

power. As is the case for vectors (where p = 1) and matrices (where p = 2), we may identify a p-th
order tensor with the p-way array of real numbers [Ai1,i2,...,ip : i1, i2, . . . , ip ∈ [n]], where Ai1,i2,...,ip

is the (i1, i2, . . . , ip)-th coordinate of A (with respect to a canonical basis).
We can consider A to be a multilinear map in the following sense: for a set of matrices {Vi ∈

Rn×mi : i ∈ [p]}, the (i1, i2, . . . , ip)-th entry in the p-way array representation of A(V1, V2, . . . , Vp) ∈
Rm1×m2×···×mp is

[A(V1, V2, . . . , Vp)]i1,i2,...,ip :=
∑

j1,j2,...,jp∈[n]
Aj1,j2,...,jp [V1]j1,i1 [V2]j2,i2 · · · [Vp]jp,ip .

Note that if A is a matrix (p = 2), then

A(V1, V2) = V �
1 AV2.

Similarly, for a matrix A and vector v ∈ Rn, we can express Av as

A(I, v) = Av ∈ Rn,

where I is the n× n identity matrix. As a final example of this notation, observe

A(ei1 , ei2 , . . . , eip) = Ai1,i2,...,ip ,

where {e1, e2, . . . , en} is the canonical basis for Rn.
Most tensors A ∈ ⊗p

Rn considered in this work will be symmetric (sometimes called super-
symmetric), which means that their p-way array representations are invariant to permutations of
the array indices: i.e., for all indices i1, i2, . . . , ip ∈ [n], Ai1,i2,...,ip = Aiπ(1),iπ(2),...,iπ(p)

for any permu-
tation π on [p]. It can be checked that this reduces to the usual definition of a symmetric matrix
for p = 2.

The rank of a p-th order tensor A ∈ ⊗p
Rn is the smallest non-negative integer k such that

A =
∑k

j=1 u1,j ⊗ u2,j ⊗ · · · ⊗ up,j for some ui,j ∈ Rn, i ∈ [p], j ∈ [k], and the symmetric rank of a

symmetric p-th order tensor A is the smallest non-negative integer k such that A =
∑k

j=1 u
⊗p
j for

some uj ∈ Rn, j ∈ [k]. The notion of rank readily reduces to the usual definition of matrix rank
when p = 2, as revealed by the singular value decomposition. Similarly, for symmetric matrices,
the symmetric rank is equivalent to the matrix rank as given by the spectral theorem.

The notion of tensor (symmetric) rank is considerably more delicate than matrix (symmetric)
rank. For instance, it is not clear a priori that the symmetric rank of a tensor should even be
finite [CGLM08]. In addition, removal of the best rank-1 approximation of a (general) tensor may
increase the tensor rank of the residual [SC10].
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Throughout, we use ‖v‖ = (
∑

i v
2
i )

1/2 to denote the Euclidean norm of a vector v, and ‖M‖ to
denote the spectral (operator) norm of a matrix. We also use ‖T‖ to denote the operator norm of
a tensor, which we define later.

3 Tensor structure in latent variable models

In this section, we give several examples of latent variable models whose low-order moments can
be written as symmetric tensors of low symmetric rank. This form is demonstrated in Theorem 3.1
for the first example. The general pattern will emerge from subsequent examples.

3.1 Exchangeable single topic models

We first consider a simple bag-of-words model for documents in which the words in the document
are assumed to be exchangeable. Recall that a collection of random variables x1, x2, . . . , x� are
exchangeable if their joint probability distribution is invariant to permutation of the indices. The
well-known De Finetti’s theorem [Aus08] implies that such exchangeable models can be viewed
as mixture models in which there is a latent variable h such that x1, x2, . . . , x� are conditionally
i.i.d. given h (see Figure 1(a) for the corresponding graphical model) and the conditional distribu-
tions are identical at all the nodes.

In our simplified topic model for documents, the latent variable h is interpreted as the (sole)
topic of a given document, and it is assumed to take only a finite number of distinct values. Let k
be the number of distinct topics in the corpus, d be the number of distinct words in the vocabulary,
and � ≥ 3 be the number of words in each document. The generative process for a document is
as follows: the document’s topic is drawn according to the discrete distribution specified by the
probability vector w := (w1, w2, . . . , wk) ∈ Δk−1. This is modeled as a discrete random variable h
such that

Pr[h = j] = wj , j ∈ [k].
Given the topic h, the document’s � words are drawn independently according to the discrete
distribution specified by the probability vector μh ∈ Δd−1. It will be convenient to represent the �
words in the document by d-dimensional random vectors x1, x2, . . . , x� ∈ Rd. Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [�],

where e1, e2, . . . ed is the standard coordinate basis for R
d.

One advantage of this encoding of words is that the (cross) moments of these random vectors
correspond to joint probabilities over words. For instance, observe that

E[x1 ⊗ x2] =
∑

1≤i,j≤d

Pr[x1 = ei, x2 = ej ] ei ⊗ ej

=
∑

1≤i,j≤d

Pr[1st word = i, 2nd word = j] ei ⊗ ej ,

so the (i, j)-the entry of the matrix E[x1 ⊗ x2] is Pr[1st word = i, 2nd word = j]. More generally,
the (i1, i2, . . . , i�)-th entry in the tensor E[x1 ⊗ x2 ⊗ · · · ⊗ x�] is Pr[1st word = i1, 2nd word =
i2, . . . , �-th word = i�]. This means that estimating cross moments, say, of x1⊗x2⊗x3, is the same
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as estimating joint probabilities of the first three words over all documents. (Recall that we assume
that each document has at least three words.)

The second advantage of the vector encoding of words is that the conditional expectation of xt
given h = j is simply μj , the vector of word probabilities for topic j:

E[xt|h = j] =

d∑
i=1

Pr[t-th word = i|h = j] ei =

d∑
i=1

[μj ]i ei = μj , j ∈ [k]

(where [μj ]i is the i-th entry in the vector μj). Because the words are conditionally independent
given the topic, we can use this same property with conditional cross moments, say, of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j]⊗ E[x2|h = j] = μj ⊗ μj , j ∈ [k].

This and similar calculations lead one to the following theorem.

Theorem 3.1 ([AHK12]). If

M2 := E[x1 ⊗ x2]

M3 := E[x1 ⊗ x2 ⊗ x3],

then

M2 =

k∑
i=1

wi μi ⊗ μi

M3 =

k∑
i=1

wi μi ⊗ μi ⊗ μi.

As we will see in Section 4.3, the structure of M2 and M3 revealed in Theorem 3.1 implies that
the topic vectors μ1, μ2, . . . , μk can be estimated by computing a certain symmetric tensor decom-
position. Moreover, due to exchangeability, all triples (resp., pairs) of words in a document—and
not just the first three (resp., two) words—can be used in forming M3 (resp., M2); see Section 6.1.

3.2 Beyond raw moments

In the single topic model above, the raw (cross) moments of the observed words directly yield
the desired symmetric tensor structure. In some other models, the raw moments do not explicitly
have this form. Here, we show that the desired tensor structure can be found through various
manipulations of different moments.

Spherical Gaussian mixtures

We now consider a mixture of k Gaussian distributions with spherical covariances. We start with
the simpler case where all of the covariances are identical; this probabilistic model is closely related
to the (non-probabilistic) k-means clustering problem [Mac67]. We then consider the case where
the spherical variances may differ.

7



Common covariance. Let wi be the probability of choosing component i ∈ [k], {μ1, μ2, . . . , μk} ⊂
Rd be the component mean vectors, and σ2I be the common covariance matrix. An observation in
this model is given by

x := μh + z,

where h is the discrete random variable with Pr[h = i] = wi for i ∈ [k] (similar to the exchangeable
single topic model), and z ∼ N (0, σ2I) is an independent multivariate Gaussian random vector in
Rd with zero mean and spherical covariance σ2I.

The Gaussian mixture model differs from the exchangeable single topic model in the way obser-
vations are generated. In the single topic model, we observe multiple draws (words in a particular
document) x1, x2, . . . , x� given the same fixed h (the topic of the document). In contrast, for the
Gaussian mixture model, every realization of x corresponds to a different realization of h.

Theorem 3.2 ([HK12]). Assume d ≥ k. The variance σ2 is the smallest eigenvalue of the covari-
ance matrix E[x⊗ x]− E[x]⊗ E[x]. Furthermore, if

M2 := E[x⊗ x]− σ2I

M3 := E[x⊗ x⊗ x]− σ2
d∑

i=1

(
E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]

)
,

then

M2 =

k∑
i=1

wi μi ⊗ μi

M3 =

k∑
i=1

wi μi ⊗ μi ⊗ μi.

Differing covariances. The general case is where each component may have a different spherical
covariance. An observation in this model is again x = μh + z, but now z ∈ Rd is a random vector
whose conditional distribution given h = i (for some i ∈ [k]) is a multivariate Gaussian N (0, σ2

i I)
with zero mean and spherical covariance σ2

i I.

Theorem 3.3 ([HK12]). Assume d ≥ k. The average variance σ̄2 :=
∑k

i=1wiσ
2
i is the smallest

eigenvalue of the covariance matrix E[x ⊗ x] − E[x] ⊗ E[x]. Let v be any unit norm eigenvector
corresponding to the eigenvalue σ̄2. If

M1 := E[x(v�(x− E[x]))2]

M2 := E[x⊗ x]− σ̄2I

M3 := E[x⊗ x⊗ x]−
d∑

i=1

(
M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1

)
,

then

M2 =

k∑
i=1

wi μi ⊗ μi

M3 =

k∑
i=1

wi μi ⊗ μi ⊗ μi.

8



As shown in [HK12], M1 =
∑k

i=1wiσ
2
i μi. Note that for the common covariance case, where

σ2
i = σ2, we have that M1 = σ2E[x] (cf. Theorem 3.2).

Independent component analysis (ICA)

The standard model for ICA [Com94, CC96, HO00, CJ10], in which independent signals are linearly
mixed and corrupted with Gaussian noise before being observed, is specified as follows. Let h ∈ Rk

be a latent random vector with independent coordinates, A ∈ Rd×k the mixing matrix, and z be a
multivariate Gaussian random vector. The random vectors h and z are assumed to be independent.
The observed random vector is

x := Ah+ z.

Let μi denote the i-th column of the mixing matrix A.

Theorem 3.4 ([CJ10]). Define

M4 := E[x⊗ x⊗ x⊗ x]− T

where T is the fourth-order tensor with

[T ]i1,i2,i3,i4 := E[xi1xi2 ]E[xi3xi4 ] + E[xi1xi3 ]E[xi2xi4 ] + E[xi1xi4 ]E[xi2xi3 ], 1 ≤ i1, i2, i3, i4 ≤ k

( i.e., T is the fourth derivative tensor of the function v 	→ 8−1E[(v�x)2]2. Let κi := E[h4i ] − 3 for
each i ∈ [k]. Then

M4 =

k∑
i=1

κi μi ⊗ μi ⊗ μi ⊗ μi.

See [HK12] for a proof of this theorem in this form. Note that κi corresponds to the excess
kurtosis, a measure of non-Gaussianity as κi = 0 if hi is a standard normal random variable.
Furthermore, note that A is not identifiable if h is a multivariate Gaussian.

We may derive forms similar to that of M2 and M3 from Theorem 3.1 using M4 by observing
that

M4(I, I, u, v) =

k∑
i=1

κi(μ
�
i u)(μ

�
i v) μi ⊗ μi,

M4(I, I, I, v) =
k∑

i=1

κi(μ
�
i v) μi ⊗ μi ⊗ μi

for any vectors u, v ∈ Rd.

Latent Dirichlet Allocation (LDA)

An increasingly popular class of latent variable models are mixed membership models, where each
datum may belong to several different latent classes simultaneously. LDA is one such model for
the case of document modeling; here, each document corresponds to a mixture over topics (as
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opposed to just a single topic). The distribution over such topic mixtures is a Dirichlet distribution
Dir(α) with parameter vector α ∈ Rk

++ with strictly positive entries; its density over the probability

simplex Δk−1 := {v ∈ Rk : vi ∈ [0, 1]∀i ∈ [k],
∑k

i=1 vi = 1} is given by

pα(h) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

hαi−1
i , h ∈ Δk−1

where
α0 := α1 + α2 + · · ·+ αk.

As before, the k topics are specified by probability vectors μ1, μ2, . . . , μk ∈ Δd−1. To generate
a document, we first draw the topic mixture h = (h1, h2, . . . , hk) ∼ Dir(α), and then conditioned
on h, we draw � words x1, x2, . . . , x� independently from the discrete distribution specified by the
probability vector

∑k
i=1 hiμi (i.e., for each xt, we independently sample a topic j according to h

and then sample xt according to μj). Again, we encode a word xt by setting xt = ei iff the t-th
word in the document is i.

The parameter α0 (the sum of the “pseudo-counts”) characterizes the concentration of the
distribution. As α0 → 0, the distribution degenerates to a single topic model (i.e., the limiting
density has, with probability 1, exactly one entry of h being 1 and the rest are 0). At the other
extreme, if α = (c, c, . . . , c) for some scalar c > 0, then as α0 = ck → ∞, the distribution of
h becomes peaked around the uniform vector (1/k, 1/k, . . . , 1/k) (furthermore, the distribution
behaves like a product distribution). We are typically interested in the case where α0 is small (e.g.,
a constant independent of k), whereupon h typically has only a few large entries. This corresponds
to the setting where the documents are mainly comprised of just a few topics.

Theorem 3.5 ([AFH+12]). Define

M1 := E[x1]

M2 := E[x1 ⊗ x2]− α0

α0 + 1
M1 ⊗M1

M3 := E[x1 ⊗ x2 ⊗ x3]

− α0

α0 + 2

(
E[x1 ⊗ x2 ⊗M1] + E[x1 ⊗M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2]

)
+

2α2
0

(α0 + 2)(α0 + 1)
M1 ⊗M1 ⊗M1.

Then

M2 =
k∑

i=1

αi

(α0 + 1)α0
μi ⊗ μi

M3 =

k∑
i=1

2αi

(α0 + 2)(α0 + 1)α0
μi ⊗ μi ⊗ μi.

Note that α0 needs to be known to form M2 and M3 from the raw moments. This, however,
is a much weaker than assuming that the entire distribution of h is known (i.e., knowledge of the
whole parameter vector α).

10
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(b) Hidden Markov model

Figure 1: Examples of latent variable models.

3.3 Multi-view models

Multi-view models (also sometimes called näıve Bayes models) are a special class of Bayesian
networks in which observed variables x1, x2, . . . , x� are conditionally independent given a latent
variable h. This is similar to the exchangeable single topic model, but here we do not require
the conditional distributions of the xt, t ∈ [�] to be identical. Techniques developed for this class
can be used to handle a number of widely used models including hidden Markov models (HMMs)
[MR06, AHK12], phylogenetic tree models [Cha96, MR06], certain tree mixtures [AHHK12], and
certain probabilistic grammar models [HKL12].

As before, we let h ∈ [k] be a discrete random variable with Pr[h = j] = wj for all j ∈ [k]. Now
consider random vectors x1 ∈ Rd1 , x2 ∈ Rd2 , and x3 ∈ Rd3 which are conditionally independent
given h, and

E[xt|h = j] = μt,j , j ∈ [k], t ∈ {1, 2, 3}

where the μt,j ∈ Rdt are the conditional means of the xt given h = j. Thus, we allow the observations
x1, x2, . . . , x� to be random vectors, parameterized only by their conditional means. Importantly,
these conditional distributions may be discrete, continuous, or even a mix of both.

We first note the form for the raw (cross) moments.

Proposition 3.1. We have that:

E[xt ⊗ xt′ ] =

k∑
i=1

wi μt,i ⊗ μt′,i, {t, t′} ⊂ {1, 2, 3}, t 
= t′

E[x1 ⊗ x2 ⊗ x3] =

k∑
i=1

wi μ1,i ⊗ μ2,i ⊗ μ3,i.

The cross moments do not possess a symmetric tensor form when the conditional distributions
are different. Nevertheless, the moments can be “symmetrized” via a simple linear transformation
of x1 and x2 (roughly speaking, this relates x1 and x2 to x3); this leads to an expression from which
the conditional means of x3 (i.e., μ3,1, μ3,2, . . . , μ3,k) can be recovered. For simplicity, we assume
d1 = d2 = d3 = k; the general case (with dt ≥ k) is easily handled using low-rank singular value
decompositions.

Theorem 3.6 ([AFH+12]). Assume that the vectors {μv,1, μv,2, . . . , μv,k} are linearly independent

11



for each v ∈ {1, 2, 3}. Define

x̃1 := E[x3 ⊗ x2]E[x1 ⊗ x2]
−1x1

x̃2 := E[x3 ⊗ x1]E[x2 ⊗ x1]
−1x2

M2 := E[x̃1 ⊗ x̃2]

M3 := E[x̃1 ⊗ x̃2 ⊗ x3].

Then

M2 =

k∑
i=1

wi μ3,i ⊗ μ3,i

M3 =

k∑
i=1

wi μ3,i ⊗ μ3,i ⊗ μ3,i.

We now discuss three examples (taken mostly from [AHK12]) where the above observations
can be applied. The first two concern mixtures of product distributions, and the last one is the
time-homogeneous hidden Markov model.

Mixtures of axis-aligned Gaussians and other product distributions

The first example is a mixture of k product distributions in Rn under a mild incoherence assump-
tion [AHK12]. Here, we allow each of the k component distributions to have a different product
distribution (e.g., Gaussian distribution with an axis-aligned covariance matrix), but require the
matrix of component means A := [μ1|μ2| · · · |μk] ∈ Rn×k to satisfy a certain (very mild) incoherence
condition. The role of the incoherence condition is explained below.

For a mixture of product distributions, any partitioning of the dimensions [n] into three groups
creates three (possibly asymmetric) “views” which are conditionally independent once the mixture
component is selected. However, recall that Theorem 3.6 requires that for each view, the k condi-
tional means be linearly independent. In general, this may not be achievable; consider, for instance,
the case μi = ei for each i ∈ [k]. Such cases, where the component means are very aligned with the
coordinate basis, are precluded by the incoherence condition.

Define coherence(A) := maxi∈[n]{e�i ΠAei} to be the largest diagonal entry of the orthogonal
projector to the range of A, and assume A has rank k. The coherence lies between k/n and 1; it
is largest when the range of A is spanned by the coordinate axes, and it is k/n when the range is
spanned by a subset of the Hadamard basis of cardinality k. The incoherence condition requires,
for some ε, δ ∈ (0, 1),

coherence(A) ≤ ε2/6

ln(3k/δ)
.

Essentially, this condition ensures that the non-degeneracy of the component means is not isolated
in just a few of the n dimensions. Operationally, it implies the following.

Proposition 3.2 ([AHK12]). Assume A has rank k and coherence(A) ≤ (ε2/6)/ ln(3k/δ) for some
ε, δ ∈ (0, 1). With probability at least 1− δ, a random partitioning of the dimensions [n] into three
groups (for each i ∈ [n], independently pick t ∈ {1, 2, 3} uniformly at random and put i in group t)
has the following property. For each t ∈ {1, 2, 3} and j ∈ [k], let μt,j be the entries of μj put into
group t, and let At := [μt,1|μt,2| · · · |μt,k]. Then for each t ∈ {1, 2, 3}, At has full column rank, and
the k-th largest singular value of At is at least

√
(1− ε)/3 times that of A.
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Therefore, three asymmetric views can be created by randomly partitioning the observed ran-
dom vector x into x1, x2, and x3, such that the resulting component means for each view satisfy
the conditions of Theorem 3.6.

Spherical Gaussian mixtures, revisited

Consider again the case of spherical Gaussian mixtures (cf. Section 3.2). As we shall see in Sec-
tion 4.3, the previous techniques (based on Theorem 3.2 and Theorem 3.3) lead to estimation
procedures when the dimension of x is k or greater (and when the k component means are linearly
independent). We now show that when the dimension is slightly larger, say greater than 3k, a
different (and simpler) technique based on the multi-view structure can be used to extract the
relevant structure.

We again use a randomized reduction. Specifically, we create three views by (i) applying a
random rotation to x, and then (ii) partitioning x ∈ Rn into three views x̃1, x̃2, x̃3 ∈ Rd for
d := n/3. By the rotational invariance of the multivariate Gaussian distribution, the distribution
of x after random rotation is still a mixture of spherical Gaussians (i.e., a mixture of product
distributions), and thus x̃1, x̃2, x̃3 are conditionally independent given h. What remains to be
checked is that, for each view t ∈ {1, 2, 3}, the matrix of conditional means of x̃t for each view
has full column rank. This is true with probability 1 as long as the matrix of conditional means
A := [μ1|μ2| · · · |μk] ∈ Rn×k has rank k and n ≥ 3k. To see this, observe that a random rotation
in Rn followed by a restriction to d coordinates is simply a random projection from Rn to Rd, and
that a random projection of a linear subspace of dimension k to Rd is almost surely injective as
long as d ≥ k. Applying this observation to the range of A implies the following.

Proposition 3.3 ([HK12]). Assume A has rank k and that n ≥ 3k. Let R ∈ Rn×n be chosen
uniformly at random among all orthogonal n× n matrices, and set x̃ := Rx ∈ Rn and Ã := RA =
[Rμ1|Rμ2| · · · |Rμk] ∈ Rn×k. Partition [n] into three groups of sizes d1, d2, d3 with dt ≥ k for each
t ∈ {1, 2, 3}. Furthermore, for each t, define x̃t ∈ Rdt (respectively, Ãt ∈ Rdt×k) to be the subvector
of x̃ (resp., submatrix of Ã) obtained by selecting the dt entries (resp., rows) in the t-th group.
Then x̃1, x̃2, x̃3 are conditionally independent given h; E[x̃t|h = j] = Ãtej for each j ∈ [k] and
t ∈ {1, 2, 3}; and with probability 1, the matrices Ã1, Ã2, Ã3 have full column rank.

It is possible to obtain a quantitative bound on the k-th largest singular value of each At in
terms of the k-th largest singular value of A (analogous to Proposition 3.2). One avenue is to
show that a random rotation in fact causes Ã to have low coherence, after which we can apply
Proposition 3.2. With this approach, it is sufficient to require n = O(k log k) (for constant ε and
δ), which results in the k-th largest singular value of each At being a constant fraction of the k-th
largest singular value of A. We conjecture that, in fact, n ≥ c · k for some c > 3 suffices.

Hidden Markov models

Our last example is the time-homogeneous HMM for sequences of vector-valued observations
x1, x2, . . . ∈ Rd. Consider a Markov chain of discrete hidden states y1 → y2 → y3 → · · · over
k possible states [k]; given a state yt at time t, the observation xt at time t (a random vector taking
values in Rd) is independent of all other observations and hidden states. See Figure 1(b).
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Let π ∈ Δk−1 be the initial state distribution (i.e., the distribution of y1), and T ∈ Rk×k be
the stochastic transition matrix for the hidden state Markov chain: for all times t,

Pr[yt+1 = i|yt = j] = Ti,j , i, j ∈ [k].
Finally, let O ∈ Rd×k be the matrix whose j-th column is the conditional expectation of xt given
yt = j: for all times t,

E[xt|yt = j] = Oej , j ∈ [k].
Proposition 3.4 ([AHK12]). Define h := y2, where y2 is the second hidden state in the Markov
chain. Then

• x1, x2, x3 are conditionally independent given h;

• the distribution of h is given by the vector w := Tπ ∈ Δk−1;

• for all j ∈ [k],
E[x1|h = j] = O diag(π)T� diag(w)−1ej

E[x2|h = j] = Oej

E[x3|h = j] = OTej .

Note the matrix of conditional means of xt has full column rank, for each t ∈ {1, 2, 3}, provided
that: (i) O has full column rank, (ii) T is invertible, and (iii) π and Tπ have positive entries.

4 Orthogonal tensor decompositions

We now show how recovering the μi’s in our aforementioned problems reduces to the problem of a
finding a certain orthogonal tensor decomposition of a symmetric tensor. We start by reviewing the
spectral decomposition of symmetric matrices, and then discuss a generalization to the higher-order
tensor case. Finally, we show how orthogonal tensor decompositions can be used for estimating the
latent variable models from the previous section.

4.1 Review: the matrix case

We first build intuition by reviewing the matrix setting, where the desired decomposition is the
eigendecomposition of a symmetric rank-k matrix M = V ΛV �, where V = [v1|v2| · · · |vk] ∈ Rn×k

is the matrix with orthonormal eigenvectors as columns, and Λ = diag(λ1, λ2, . . . , λk) ∈ Rk×k is
diagonal matrix of non-zero eigenvalues. In other words,

M =

k∑
i=1

λi viv
�
i =

k∑
i=1

λi v
⊗2
i . (1)

Such a decomposition is guaranteed to exist for every symmetric matrix.
Recovery of the vi’s and λi’s can be viewed at least two ways. First, each vi is fixed under the

mapping u 	→Mu, up to a scaling factor λi:

Mvi =

k∑
j=1

λj(v
�
j vi)vj = λivi

14



as v�
j vi = 0 for all j 
= i by orthogonality. The vi’s are not necessarily the only such fixed points. For

instance, with the multiplicity λ1 = λ2 = λ, then any linear combination of v1 and v2 is similarly
fixed under M . However, in this case, the decomposition in (1) is not unique, as λ1v1v

�
1 +λ2v2v

�
2 is

equal to λ(u1u
�
1 +u2u

�
2 ) for any pair of orthonormal vectors, u1 and u2 spanning the same subspace

as v1 and v2. Nevertheless, the decomposition is unique when λ1, λ2, . . . , λk are distinct, whereupon
the vj ’s are the only directions fixed under u 	→Mu up to non-trivial scaling.

The second view of recovery is via the variational characterization of the eigenvalues. Assume
λ1 > λ2 > · · · > λk; the case of repeated eigenvalues again leads to similar non-uniqueness as
discussed above. Then the Rayleigh quotient

u 	→ u�Mu

u�u

is maximized over non-zero vectors by v1. Furthermore, for any s ∈ [k], the maximizer of the
Rayleigh quotient, subject to being orthogonal to v1, v2, . . . , vs−1, is vs. Another way of obtaining
this second statement is to consider the deflated Rayleigh quotient

u 	→
u�
(
M −∑s−1

j=1 λjvjv
�
j

)
u

u�u

and observe that vs is the maximizer.
Efficient algorithms for finding these matrix decompositions are well studied [GvL96, Section

8.2.3], and iterative power methods are one effective class of algorithms.
We remark that in our multilinear tensor notation, we may write the maps u 	→ Mu and

u 	→ u�Mu/‖u‖22 as
u 	→Mu ≡ u 	→M(I, u), (2)

u 	→ u�Mu

u�u
≡ u 	→ M(u, u)

u�u
. (3)

4.2 The tensor case

Decomposing general tensors is a delicate issue; tensors may not even have unique decompositions.
Fortunately, the orthogonal tensors that arise in the aforementioned models have a structure which
permits a unique decomposition under a mild non-degeneracy condition. We focus our attention to
the case p = 3, i.e., a third order tensor; the ideas extend to general p with minor modifications.

An orthogonal decomposition of a symmetric tensor T ∈⊗3
Rn is a collection of orthonormal

(unit) vectors {v1, v2, . . . , vk} together with corresponding positive scalars λi > 0 such that

T =

k∑
i=1

λiv
⊗3
i . (4)

Note that since we are focusing on odd-order tensors (p = 3), we have added the requirement that
the λi be positive. This convention can be followed without loss of generality since −λiv

⊗p
i =

λi(−vi)⊗p whenever p is odd. Also, it should be noted that orthogonal decompositions do not
necessarily exist for every symmetric tensors.

In analogy to the matrix setting, we consider two ways to view this decomposition: a fixed-point
characterization and a variational characterization. Related characterizations based on optimal
rank-1 approximations can be found in [ZG01].
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Fixed-point characterization

For a tensor T , consider the vector-valued map

u 	→ T (I, u, u) (5)

which is the third-order generalization of (2). This can be explicitly written as

T (I, u, u) =
∑

1≤j,l≤d

Ti,j,l(e
�
j u)(e

�
l u)ei.

Observe that (5) is not a linear map, which is a key difference compared to the matrix case.
An eigenvector u for a matrixM satisfies M(I, u) = λu, for some scalar λ. We say a unit vector

u ∈ Rn is an eigenvector of T , with corresponding eigenvalue λ ∈ R, if

T (I, u, u) = λu.

(To simplify the discussion, we assume throughout that eigenvectors have unit norm; otherwise,
for scaling reasons, we replace the above equation with T (I, u, u) = λ‖u‖u.) For orthogonally
decomposable tensors T =

∑k
i=1 λiv

⊗3
i ,

T (I, u, u) =

k∑
i=1

λi(u
�vi)

2vi .

By the orthogonality of the vi, it is clear that T (I, vi, vi) = λivi for all i ∈ [k]. Therefore each
(vi, λi) is an eigenvector/eigenvalue pair.

There are a number of subtle differences compared to the matrix case that arise as a result
of the non-linearity of (5). First, even with the multiplicity λ1 = λ2 = λ, a linear combination
u := c1v1 + c2v2 may not be an eigenvector. In particular,

T (I, u, u) = λ1c
2
1v1 + λ2c

2
2v2 = λ(c21v1 + c22v2)

may not be a multiple of c1v1+ c2v2. This indicates that the issue of repeated eigenvalues does not
have the same status as in the matrix case. Second, even if all the eigenvalues are distinct, it turns
out that the vi’s are not the only eigenvectors. For example, set u := (1/λ1)v1 + (1/λ2)v2. Then,

T (I, u, u) = λ1(1/λ1)
2v1 + λ2(1/λ2)

2v2 = u,

so u/‖u‖ is an eigenvector. More generally, for any subset S ⊆ [k], we have that
∑

i∈S(1/λi)vi is
(proportional to) an eigenvector.

As we now see, these additional eigenvectors can be viewed as spurious. We say a unit vector
u is a robust eigenvector of T if there exists an ε > 0 such that for all θ ∈ {u′ ∈ Rn : ‖u′ − u‖ ≤ ε},
repeated iteration of the map

θ̄ 	→ T (I, θ̄, θ̄)

‖T (I, θ̄, θ̄)‖ , (6)

starting from θ converges to u. Note that the map (6) rescales the output to have unit Euclidean
norm. Robust eigenvectors are also called attracting fixed points of (6) (see, e.g., [KM11]).

The following theorem implies that if T has an orthogonal decomposition as given in (4), then
the set of robust eigenvectors of T are precisely the set {v1, v2, . . . vk}, implying that the orthogonal
decomposition is unique. (For even order tensors, the uniqueness is true up to sign-flips of the vi.)
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Theorem 4.1. Let T have an orthogonal decomposition as given in (4).

1. The set of θ ∈ Rn which do not converge to some vi under repeated iteration of (6) has
measure zero.

2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.
The proof of Theorem 4.1 is given in Appendix A.1, and follows readily from simple orthogo-

nality considerations. Note that every vi in the orthogonal tensor decomposition is robust, whereas
for a symmetric matrix M , for almost all initial points, the map θ̄ 	→ Mθ̄

‖Mθ̄‖ converges only to an

eigenvector corresponding to the largest magnitude eigenvalue. Also, since the tensor order is odd,
the signs of the robust eigenvectors are fixed, as each −vi is mapped to vi under (6).

Variational characterization

We now discuss a variational characterization of the orthogonal decomposition. The generalized
Rayleigh quotient [ZG01] for a third-order tensor is

u 	→ T (u, u, u)

(u�u)3/2
,

which can be compared to (3). For an orthogonally decomposable tensor, the following theorem
shows that a non-zero vector u ∈ Rn is an isolated local maximizer [NW99] of the generalized
Rayleigh quotient if and only if u = vi for some i ∈ [k].
Theorem 4.2. Assume n ≥ 2. Let T have an orthogonal decomposition as given in (4), and
consider the optimization problem

max
u∈Rn

T (u, u, u) s.t. ‖u‖ = 1.

1. The stationary points are eigenvectors of T .

2. A stationary point u is an isolated local maximizer if and only if u = vi for some i ∈ [k].
The proof of Theorem 4.2 is given in Appendix A.2. It is similar to local optimality analysis

for ICA methods using fourth-order cumulants (e.g., [DL95, FJK96]).
Again, we see similar distinctions to the matrix case. In the matrix case, the only local maximiz-

ers of the Rayleigh quotient are the eigenvectors with the largest eigenvalue (and these maximizers
take on the globally optimal value). For the case of orthogonal tensor forms, the robust eigenvectors
are precisely the isolated local maximizers.

An important implication of the two characterizations is that, for orthogonally decomposable
tensors T , (i) the local maximizers of the objective function u 	→ T (u, u, u)/(u�u)3/2 correspond
precisely to the vectors vi in the decomposition, and (ii) these local maximizers can be reliably
identified using a simple fixed-point iteration (i.e., the tensor analogue of the matrix power method).
Moreover, a second-derivative test based on T (I, I, u) can be employed to test for local optimality
and rule out other stationary points.
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4.3 Estimation via orthogonal tensor decompositions

We now demonstrate how the moment tensors obtained for various latent variable models in Sec-
tion 3 can be reduced to an orthogonal form. For concreteness, we take the specific form from the
exchangeable single topic model (Theorem 3.1):

M2 =
k∑

i=1

wi μi ⊗ μi,

M3 =

k∑
i=1

wi μi ⊗ μi ⊗ μi.

(The more general case allows the weights wi inM2 to differ inM3, but for simplicity we keep them
the same in the following discussion.) We now show how to reduce these forms to an orthogonally
decomposable tensor from which the wi and μi can be recovered. See Appendix D for a discussion as
to how previous approaches [MR06, AHK12, AFH+12, HK12] achieved this decomposition through
a certain simultaneous diagonalization method.

Throughout, we assume the following non-degeneracy condition.

Condition 4.1 (Non-degeneracy). The vectors μ1, μ2, . . . , μk ∈ Rd are linearly independent, and
the scalars w1, w2, . . . , wk > 0 are strictly positive.

Observe that Condition 4.1 implies that M2 � 0 is positive semidefinite and has rank-k. This
is a mild condition; furthermore, when this condition is not met, learning is conjectured to be hard
for both computational [MR06] and information-theoretic reasons [MV10].

The reduction

First, let W ∈ Rd×k be a linear transformation such that

M2(W,W ) = W�M2W = I

where I is the k × k identity matrix (i.e., W whitens M2). Since M2 � 0, we may for concreteness
takeW := UD−1/2, where U ∈ Rd×k is the matrix of orthonormal eigenvectors ofM2, andD ∈ Rk×k

is the diagonal matrix of positive eigenvalues of M2. Let

μ̃i :=
√
wi W

�μi.

Observe that

M2(W,W ) =

k∑
i=1

W�(
√
wiμi)(

√
wiμi)

�W =

k∑
i=1

μ̃iμ̃
�
i = I,

so the μ̃i ∈ Rk are orthonormal vectors.
Now define M̃3 :=M3(W,W,W ) ∈ Rk×k×k, so that

M̃3 =
k∑

i=1

wi (W
�μi)

⊗3 =
k∑

i=1

1√
wi

μ̃⊗3
i .
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As the following theorem shows, the orthogonal decomposition of M̃3 can be obtained by identifying
its robust eigenvectors, upon which the original parameters wi and μi can be recovered. For
simplicity, we only state the result in terms of robust eigenvector/eigenvalue pairs; one may also
easily state everything in variational form using Theorem 4.2.

Theorem 4.3. Assume Condition 4.1 and take M̃3 as defined above.

1. The set of robust eigenvectors of M̃3 is equal to {μ̃1, μ̃2, . . . , μ̃k}.
2. The eigenvalue corresponding to the robust eigenvector μ̃i of M̃3 is equal to 1/

√
wi, for all

i ∈ [k].
3. If B ∈ Rd×k is the Moore-Penrose pseudoinverse of W�, and (v, λ) is a robust eigenvec-

tor/eigenvalue pair of M̃3, then λBv = μi for some i ∈ [k].
The theorem follows by combining the above discussion with the robust eigenvector characteri-

zation of Theorem 4.1. Recall that we have taken as convention that eigenvectors have unit norm, so
the μi are exactly determined from the robust eigenvector/eigenvalue pairs of M̃3 (together with the
pseudoinverse of W�); in particular, the scale of each μi is correctly identified (along with the cor-
responding wi). Relative to previous works on moment-based estimators for latent variable models
(e.g., [AHK12, AFH+12, HK12]), Theorem 4.3 emphasizes the role of the special tensor structure,
which in turn makes transparent the applicability of methods for orthogonal tensor decomposition.

Local maximizers of (cross moment) skewness

The variational characterization provides an interesting perspective on the robust eigenvectors for
these latent variable models. Consider the exchangeable single topic models (Theorem 3.1), and
the objective function

u 	→ E[(x�
1 u)(x

�
2 u)(x

�
3 u)]

E[(x�
1 u)(x

�
2 u)]

3/2
=

M3(u, u, u)

M2(u, u)3/2
.

In this case, every local maximizer u∗ satisfies M2(I, u
∗) =

√
wiμi for some i ∈ [k]. The objective

function can be interpreted as the (cross moment) skewness of the random vectors x1, x2, x3 along
direction u.

5 Tensor power method

In this section, we consider the tensor power method of [LMV00, Remark 3] for orthogonal tensor
decomposition. We first state a simple convergence analysis for an orthogonally decomposable
tensor T .

When only an approximation T̂ to an orthogonally decomposable tensor T is available (e.g.,
when empirical moments are used to estimate population moments), an orthogonal decomposition
need not exist for this perturbed tensor (unlike for the case of matrices), and a more robust
approach is required to extract the approximate decomposition. Here, we propose such a variant
in Algorithm 1 and provide a detailed perturbation analysis. We note that alternative approaches
such as simultaneous diagonalization can also be employed (see Appendix D).
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5.1 Convergence analysis for orthogonally decomposable tensors

The following lemma establishes the quadratic convergence of the tensor power method (i.e., re-
peated iteration of (6)) for extracting a single component of the orthogonal decomposition. Note
that the initial vector θ0 determines which robust eigenvector will be the convergent point. Compu-
tation of subsequent eigenvectors can be computed with deflation, i.e., by subtracting appropriate
terms from T .

Lemma 5.1. Let T ∈⊗3
Rn have an orthogonal decomposition as given in (4). For a vector θ0 ∈

Rn, suppose that the set of numbers |λ1v
�
1 θ0|, |λ2v

�
2 θ0|, . . . , |λkv

�
k θ0| has a unique largest element.

Without loss of generality, say |λ1v
�
1 θ0| is this largest value and |λ2v

�
2 θ0| is the second largest value.

For t = 1, 2, . . . , let

θt :=
T (I, θt−1, θt−1)

‖T (I, θt−1, θt−1)‖ .

Then

‖v1 − θt‖2 ≤
(
2λ2

1

k∑
i=2

λ−2
i

)
·
∣∣∣∣λ2v

�
2 θ0

λ1v�
1 θ0

∣∣∣∣2t+1

.

That is, repeated iteration of (6) starting from θ0 converges to v1 at a quadratic rate.

To obtain all eigenvectors, we may simply proceed iteratively using deflation, executing the
power method on T−∑j λjv

⊗3
j after having obtained robust eigenvector / eigenvalue pairs {(vj , λj)}.

Proof. Let θ0, θ1, θ2, . . . be the sequence given by θ0 := θ0 and θt := T (I, θt−1, θt−1) for t ≥ 1. Let

ci := v�
i θ0 for all i ∈ [k]. It is easy to check that (i) θt = θt/‖θt‖, and (ii) θt =

∑k
i=1 λ

2t−1
i c2

t

i vi.

(Indeed, θt+1 =
∑k

i=1 λi(v
�
i θt)

2vi =
∑k

i=1 λi(λ
2t−1
i c2

t

i )
2vi =

∑k
i=1 λ

2t+1−1
i c2

t+1

i vi.) Then

1− (v�
1 θt)

2 = 1− (v�
1 θt)

2

‖θt‖2
= 1− λ2t+1−2

1 c2
t+1

1∑k
i=1 λ

2t+1−2
i c2

t+1

i

≤
∑k

i=2 λ
2t+1−2
i c2

t+1

i∑k
i=1 λ

2t+1−2
i c2

t+1

i

≤ λ2
1

k∑
i=2

λ−2
i ·
∣∣∣∣λ2c2
λ1c1

∣∣∣∣2t+1

.

Since λ1 > 0, we have v�
1 θt > 0 and hence ‖v1−θt‖2 = 2(1−v�

1 θt) ≤ 2(1− (v�
1 θt)

2) as required.

5.2 Perturbation analysis of a robust tensor power method

Now we consider the case where we have an approximation T̂ to an orthogonally decomposable
tensor T . Here, a more robust approach is required to extract an approximate decomposition. We
propose such an algorithm in Algorithm 1, and provide a detailed perturbation analysis.

Assume that the symmetric tensor T ∈ Rk×k×k is orthogonally decomposable, and that T̂ =
T + E, where the perturbation E ∈ Rk×k×k is a symmetric tensor with small operator norm:

‖E‖ := sup
‖θ‖=1

|E(θ, θ, θ)|.

In our latent variable model applications, T̂ is the tensor formed by using empirical moments,
while T is the orthogonally decomposable tensor derived from the population moments for the
given model.

The following theorem is similar to Wedin’s perturbation theorem for singular vectors of matri-
ces [Wed72] in that it bounds the error of the (approximate) decomposition returned by Algorithm 1
on input T̂ in terms of the size of the perturbation, provided that the perturbation is small enough.
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Algorithm 1 Robust tensor power method

input symmetric tensor T̃ ∈ Rk×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: for τ = 1 to L do
2: Draw θ

(τ)
0 uniformly at random from the unit sphere in Rk.

3: for t = 1 to N do
4: Compute power iteration update

θ
(τ)
t :=

T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)

‖T̃ (I, θ(τ)t−1, θ
(τ)
t−1)‖

(7)

5: end for
6: end for
7: Let τ∗ := argmaxτ∈[L]{T̃ (θ(τ)N , θ

(τ)
N , θ

(τ)
N )}.

8: Do N power iteration updates (7) starting from θ
(τ∗)
N to obtain θ̂, and set λ̂ := T̃ (θ̂, θ̂, θ̂).

9: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ − λ̂ θ̂⊗3.

Theorem 5.1. Let T̂ = T + E ∈ Rk×k×k, where T is a symmetric tensor with orthogonal decom-
position T =

∑k
i=1 λiv

⊗3
i where each λi > 0, {v1, v2, . . . , vk} is an orthonormal basis, and E has

operator norm ε := ‖E‖. Define λmin := min{λi : i ∈ [k]}, and λmax := max{λi : i ∈ [k]}. There
exists universal constants C1, C2, C3 > 0 such that the following holds. Pick any η ∈ (0, 1), and
suppose

ε ≤ C1 · λmin

k
, N ≥ C2 ·

(
log(k) + log log

(λmax

ε

))
,

and√
ln(L/ log2(k/η))

ln(k)
·
(
1− ln(ln(L/ log2(k/η))) + C3

4 ln(L/ log2(k/η))
−
√

ln(8)

ln(L/ log2(k/η))

)
≥ 1.02

(
1 +

√
ln(4)

ln(k)

)
.

(Note that the condition on L holds with L = poly(k) log(1/η).) Suppose that Algorithm 1 is
iteratively called k times, where the input tensor is T̂ in the first call, and in each subsequent call,
the input tensor is the deflated tensor returned by the previous call. Let (v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k)
be the sequence of estimated eigenvector/eigenvalue pairs returned in these k calls. With probability
at least 1− η, there exists a permutation π on [k] such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥T − k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥ ≤ 55ε.

The proof of Theorem 5.1 is given in Appendix B.
One important difference from Wedin’s theorem is that this is an algorithm dependent pertur-

bation analysis, specific to Algorithm 1 (since the perturbed tensor need not have an orthogonal
decomposition). Furthermore, note that Algorithm 1 uses multiple restarts to ensure (approximate)
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convergence—the intuition is that by restarting at multiple points, we eventually start at a point
in which the initial contraction towards some eigenvector dominates the error E in our tensor. The
proof shows that we find such a point with high probability within L = poly(k) trials. It should be
noted that for large k, the required bound on L is very close to linear in k.

We note that it is also possible to design a variant of Algorithm 1 that instead uses a stop-
ping criterion to determine if an iterate has (almost) converged to an eigenvector. For instance,
if T̃ (θ, θ, θ) > max{‖T̃‖F /

√
2r, ‖T̃ (I, I, θ)‖F /1.05}, where ‖T̃‖F is the tensor Frobenius norm

(vectorized Euclidean norm), and r is the expected rank of the unperturbed tensor (r = k −
# of deflation steps), then it can be shown that θ must be close to one of the eigenvectors, pro-
vided that the perturbation is small enough. Using such a stopping criterion can reduce the number
of random restarts when a good initial point is found early on. See Appendix C for details.

In general, it is possible, when run on a general symmetric tensor (e.g., T̂ ), for the tensor power
method to exhibit oscillatory behavior [KR02, Example 1]. This is not in conflict with Theorem 5.1,
which effectively bounds the amplitude of these oscillations; in particular, if T̂ = T +E is a tensor
built from empirical moments, the error term E (and thus the amplitude of the oscillations) can
be driven down by drawing more samples. The practical value of addressing these oscillations and
perhaps stabilizing the algorithm is an interesting direction for future research [KM11].

A final consideration is that for specific applications, it may be possible to use domain knowl-
edge to choose better initialization points. For instance, in the topic modeling applications (cf. Sec-
tion 3.1), the eigenvectors are related to the topic word distributions, and many documents may
be primarily composed of words from just single topic. Therefore, good initialization points can
be derived from these single-topic documents themselves, as these points would already be close to
one of the eigenvectors.

6 Discussion

6.1 Practical implementation considerations

A number of practical concerns arise when dealing with moment matrices and tensors. Below, we
address two issues that are especially pertinent to topic modeling applications [AHK12, AFH+12]
(or other settings where the observations are sparse).

Efficient moment representation for exchangeable models

In an exchangeable bag-of-words model, it is assumed that the words x1, x2, . . . , x� in a document
are conditionally i.i.d. given the topic h. This allows one to estimate p-th order moments using
just p words per document. The estimators obtained via Theorem 3.1 (single topic model) and
Theorem 3.5 (LDA) use only up to third-order moments, which suggests that each document only
needs to have three words.

In practice, one should use all of the words in a document for efficient estimation of the moments.
One way to do this is to average over all

(
�
3

) · 3! ordered triples of words in a document of length
�. At first blush, this seems computationally expensive (when � is large), but as it turns out, the
averaging can be done implicitly. Let c ∈ Rd be the word count vector for a document of length
�, so ci is the number of occurrences of word i in the document, and

∑d
i=1 ci = �. Note that c is

a sufficient statistic for the document. Then, the contribution of this document to the empirical
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third-order moment tensor is given by

1(
�
3

) · 1
3!
·
(
c⊗ c⊗ c+ 2

d∑
i=1

ci (ei ⊗ ei ⊗ ei)

−
d∑

i=1

d∑
j=1

cicj (ei ⊗ ei ⊗ ej)−
d∑

i=1

d∑
j=1

cicj (ei ⊗ ej ⊗ ei)−
d∑

i=1

d∑
j=1

cicj (ei ⊗ ej ⊗ ej)

)
. (8)

It can be checked that this quantity is equal to

1(
�
3

) · 1
3!
·

∑
ordered word triple (x, y, z)

ex ⊗ ey ⊗ ez

where the sum is over all ordered word triples in the document. A similar expression is easily
derived for the contribution of the document to the empirical second-order moment matrix:

1(
�
2

) · 1
2!
·
(
c⊗ c− diag(c)

)
. (9)

Note that the word count vector c is generally a sparse vector, so this representation allows for
efficient multiplication by the moment matrices and tensors in time linear in the size of the document
corpus (i.e., the number of non-zero entries in the term-document matrix).

Dimensionality reduction

Another serious concern regarding the use of tensor forms of moments is the need to operate
on multidimensional arrays with Ω(d3) values (it is typically not exactly d3 due to symmetry).
When d is large (e.g., when it is the size of the vocabulary in natural language applications), even
storing a third-order tensor in memory can be prohibitive. Sparsity is one factor that alleviates
this problem. Another approach is to use efficient linear dimensionality reduction. When this
is combined with efficient techniques for matrix and tensor multiplication that avoid explicitly
constructing the moment matrices and tensors (such as the procedure described above), it is possible
to avoid any computational scaling more than linear in the dimension d and the training sample
size.

Consider for concreteness the tensor decomposition approach for the exchangeable single topic
model as discussed in Section 4.3. Using recent techniques for randomized linear algebra compu-
tations (e.g, [HMT11]), it is possible to efficiently approximate the whitening matrix W ∈ Rd×k

from second-moment matrix M2 ∈ Rd×d. To do this, one first multiplies M2 by a random matrix
R ∈ Rd×k′ for some k′ ≥ k, and then computes the top k singular vectors of the product M2R.
This provides a basis U ∈ Rd×k whose span is approximately the range of M2. From here, an
approximate SVD of U�M2U is used to compute the approximate whitening matrix W . Note that
both matrix products M2R and U�M2U may be performed via implicit access to M2 by exploiting
(9), so that M2 need not be explicitly formed. With the whitening matrix W in hand, the third-

moment tensor M̃3 = M3(W,W,W ) ∈ Rk×k×k can be implicitly computing via (8). For instance,

the core computation in the tensor power method θ′ := M̃3(I, θ, θ) is performed by (i) computing
η := Wθ, (ii) computing η′ := M3(I, η, η), and finally (iii) computing θ′ := W�η′. Using the fact
that M3 is an empirical third-order moment tensor, these steps can be computed with O(dk +N)
operations, where N is the number of non-zero entries in the term-document matrix.
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6.2 Computational complexity

It is interesting to consider the computational complexity of the tensor power method in the dense
setting where T ∈ Rk×k×k is orthogonally decomposable but otherwise unstructured. Each iter-
ation requires O(k3) operations, and assuming at most k1+δ random restarts for extracting each
eigenvector (for some small δ > 0) and O(log(k) + log log(1/ε)) iterations per restart, the total
running time is O(k5+δ(log(k) + log log(1/ε))) to extract all k eigenvectors and eigenvalues.

An alternative approach to extracting the orthogonal decomposition of T is to reorganize T into
a matrix M ∈ Rk×k2 by flattening two of the dimensions into one. In this case, if T =

∑k
i=1 λiv

⊗3
i ,

then M =
∑k

i=1 λivi ⊗ vec(vi ⊗ vi). This reveals the singular value decomposition of M (assuming
the eigenvalues λ1, λ2, . . . , λk are distinct), and therefore can be computed with O(k4) operations.
Therefore it seems that the tensor power method is less efficient than a pure matrix-based approach
via singular value decomposition. However, it should be noted that this matrix-based approach
fails to recover the decomposition when eigenvalues are repeated, and it is unstable when the gap
between eigenvalues is small.

It is worth noting that the running times differ by roughly a factor of Θ(k1+δ), which can
be accounted for by the random restarts. This gap can potentially be alleviated or removed by
using a more clever method for initialization. Moreover, using special structure in the problem (as
discussed above) can also improve the running time of the tensor power method.

6.3 Sample complexity bounds

Previous work on using linear algebraic methods for estimating latent variable models crucially rely
on matrix perturbation analysis for deriving sample complexity bounds [MR06, HKZ12, AHK12,
AFH+12, HK12]. The learning algorithms in these works are plug-in estimators that use empirical
moments in place of the population moments, and then follow algebraic manipulations that result in
the desired parameter estimates. As long as these manipulations can tolerate small perturbations of
the population moments, a sample complexity bound can be obtained by exploiting the convergence
of the empirical moments to the population moments via the law of large numbers. As discussed
in Appendix D, these approaches do not directly lead to practical algorithms due to a certain
amplification of the error (a polynomial factor of k, which is observed in practice).

Using the perturbation analysis for the tensor power method, improved sample complexity
bounds can be obtained for all of the examples discussed in Section 3. The underlying analysis
remains the same as in previous works (e.g., [AFH+12, HK12]), the main difference being the
accuracy of the orthogonal tensor decomposition obtained via the tensor power method. Relative
to the previously cited works, the sample complexity bound will be considerably improved in its
dependence on the rank parameter k, as Theorem 5.1 implies that the tensor estimation error (e.g.,

error in estimating M̃3 from Section 4.3) is not amplified by any factor explicitly depending on k
(there is a requirement that the error be smaller than some factor depending on k, but this only
contributes to a lower-order term in the sample complexity bound). See Appendix D for further
discussion regarding the stability of the techniques from these previous works.

6.4 Other perspectives

The tensor power method is simply one approach for extracting the orthogonal decomposition
needed in parameter estimation. The characterizations from Section 4.2 suggest that a number

24



of fixed point and variational techniques may be possible (and Appendix D provides yet another
perspective based on simultaneous diagonalization). One important consideration is that the model
is often misspecified, and therefore approaches with more robust guarantees (e.g., for convergence)
are desirable. Our own experience with the tensor power method (as applied to exchangeable topic
modeling) is that while model misspecification does indeed affect convergence, the results can be
very reasonable even after just a dozen or so iterations [AFH+12]. Nevertheless, robustness is likely
more important in other applications, and thus the stabilization approaches, such as those proposed
in [KR02, RK03, Erd09, KM11], may be advantageous.
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A Fixed-point and variational characterizations of orthogonal ten-
sor decompositions

A.1 Proof of Theorem 4.1

Theorem 4.1 restated. Let T have an orthogonal decomposition as given in (4).

1. The set of θ ∈ Rn which do not converge to some vi under repeated iteration of (6) has
measure zero.

2. The set of robust eigenvectors of T is {v1, v2, . . . , vk}.
Proof. For a random choice of θ ∈ Rn (under any distribution absolutely continuous with respect
to Lebesgue measure), the values |λ1v

�
1 θ|, |λ2v

�
2 θ|, . . . , |λkv

�
k θ| will be distinct with probability 1.

Therefore, there exists a unique largest value, say |λiv
�
i θ| for some i ∈ [k], and by Lemma 5.1, we

have convergence to vi under repeated iteration of (6). Thus the first claim holds.
We now prove the second claim. First, we show that every vi is a robust eigenvector. Pick any

i ∈ [k], and note that for a sufficiently small ball around vi, we have that for all θ in this ball, λiv
�
i θ

is strictly greater than λjv
�
j θ for j ∈ [k] \ {i}. Thus by Lemma 5.1, vi is a robust eigenvector. Now

we show that the vi are the only robust eigenvectors. Suppose there exists some robust eigenvector
u not equal to vi for any i ∈ [k]. Then there exists a positive measure set around u such that all
points in this set converge to u under repeated iteration of (6). This contradicts the first claim.

A.2 Proof of Theorem 4.2

Theorem 4.2 restated. Assume n ≥ 2. Let T have an orthogonal decomposition as given in (4),
and consider the optimization problem

max
u∈Rn

T (u, u, u) s.t. ‖u‖ = 1.

1. The stationary points are eigenvectors of T .

2. A stationary point u is an isolated local maximizer if and only if u = vi for some i ∈ [k].
Proof. Consider the Lagrangian form of the corresponding constrained maximization problem over
unit vectors u ∈ Rn:

L(u, λ) := T (u, u, u)− 3

2
λ(u�u− 1).

Since

∇uL(u, λ) = ∇u

( k∑
i=1

λi(v
�
i u)

3 − 3

2
λ(u�u− 1)

)
= 3
(
T (I, u, u)− λu

)
,
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the stationary points u ∈ Rn (with ‖u‖ = 1) satisfy

T (I, u, u) = λu

for some λ ∈ R, i.e., (u, λ) is an eigenvector/eigenvalue pair of T .
Now we characterize the isolated local maximizers. Extend {v1, v2, . . . , vk} to an orthonormal

basis {v1, v2, . . . , vn} of Rn. Now pick any stationary point u =
∑n

i=1 civi with λ := T (u, u, u) =
u�T (I, u, u). Then

λic
2
i = λi(u

�vi)
2 = v�

i T (I, u, u) = λv�
i u = λci ≥ 0, i ∈ [k],

and thus

∇2
uL(u, λ) = 6

k∑
i=1

λici viv
�
i − 3λI = 3λ

(
2
∑
i∈Ω

viv
�
i − I

)
where Ω := {i ∈ [k] : ci 
= 0}. This implies that for any unit vector w ∈ Rn,

w�∇2
uL(u, λ)w = 3λ

(
2
∑
i∈Ω

(v�
i w)

2 − 1

)
.

The point u is an isolated local maximum if the above quantity is strictly negative for all unit
vectors w orthogonal to u. We now consider three cases depending on the cardinality of Ω and the
sign of λ.

• Case 1: |Ω| = 1 and λ > 0. This means u = vi for some i ∈ [k] (as u = −vi implies
λ = −λi < 0). In this case,

w�∇2
uL(u, λ)w = 3λi(2(v

�
i w)

2 − 1) = −3λi < 0

for all w ∈ Rn satisfying (u�w)2 = (v�
i w)

2 = 0. Hence u is an isolated local maximizer.

• Case 2: |Ω| ≥ 2 and λ > 0. Since |Ω| ≥ 2, we may pick a strict non-empty subset S � Ω and
set

w :=
1

Z

(
1

ZS

∑
i∈S

civi − 1

ZSc

∑
i∈Ω\S

civi

)
where ZS :=

∑
i∈S c2i , ZSc :=

∑
i∈Ω\S c2i , and Z :=

√
1/ZS + 1/ZSc . It is easy to check that

‖w‖2 = ∑i∈Ω(v
�
i w)

2 = 1 and u�w = 0. Consider any open neighborhood U of u, and pick

δ > 0 small enough so that ũ :=
√
1− δ2u + δw is contained in U . Set u0 :=

√
1− δ2u. By
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Taylor’s theorem, there exists ε ∈ [0, δ] such that, for ū := u0 + εw, we have

T (ũ, ũ, ũ) = T (u0, u0, u0) +∇uT (u, u, u)
�(ũ− u0)

∣∣∣
u=u0

+
1

2
(ũ− u0)

�∇2
uT (u, u, u)(ũ− u0)

∣∣∣
u=ū

= (1− δ2)3/2λ+ δ
√
1− δ2λu�w +

1

2
δ2w�∇2

uT (u, u, u)w
∣∣∣
u=ū

= (1− δ2)3/2λ+ 0 + 3δ2
k∑

i=1

λi(v
�
i (u0 + εw))(v�

i w)
2

= (1− δ2)3/2λ+ 3δ2
√
1− δ2

k∑
i=1

λici(v
�
i w)

2 + 3δ2ε
k∑

i=1

λi(v
�
i w)

3

= (1− δ2)3/2λ+ 3δ2
√
1− δ2λ

∑
i∈Ω

(v�
i w)

2 + 3δ2ε
k∑

i=1

λi(v
�
i w)

3

= (1− δ2)3/2λ+ 3δ2
√
1− δ2λ+ 3δ2ε

k∑
i=1

λi(v
�
i w)

3

=

(
1− 3

2
δ2 +O(δ4)

)
λ+ 3δ2

√
1− δ2λ+ 3δ2ε

k∑
i=1

λi(v
�
i w)

3.

Since ε ≤ δ, for small enough δ, the RHS is strictly greater than λ. This implies that u is not
an isolated local maximizer.

• Case 3: |Ω| = 0 or λ ≤ 0. Note that if |Ω| = 0, then λ = 0, so we just consider λ ≤ 0.
Consider any open neighborhood U of u, and pick j ∈ [n] and δ > 0 small enough so that
ũ := Z−1(u + δvj) is contained in U , where Z :=

√
1 + 2cjδ + δ2. (Note that this is always

possible because n ≥ 2.) If cj = 0, then clearly T (ũ, ũ, ũ) = (1 + δ2)−3/2
(
λ + δ3λj

) ≥ λ.
Otherwise,

T (ũ, ũ, ũ) = (1 + 2cjδ + δ2)−3/2
(
T (u, u, u) + 3λjc

2
jδ + 3λjcjδ

2 + δ3λj

)
=
(1 + 3cjδ + 3δ2)λ

(1 + 2cjδ + δ2)3/2
+

δ3λj

(1 + 2cjδ + δ2)3/2

=
(
1−O(c2jδ

2)
)
λ+

(
1−O(δ)

)
δ3λj ≥ λ

for sufficiently small δ. Thus u is not an isolated local maximizer.

From these exhaustive cases, we conclude that a stationary point u is an isolated local maximizer
if and only if u = vi for some i ∈ [k].

Note that we require n ≥ 2 because in the case n = 1, the unit sphere contains only two points
(e1 and −e1), and both are isolated.

B Analysis of robust power method

In this section, we prove Theorem 5.1. The proof is structured as follows. In Appendix B.1, we
show that with high probability, at least one out of L random vectors will be a good initializer
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for the tensor power iterations. An initializer is good if its projection onto an eigenvector is
noticeably larger than its projection onto other eigenvectors. We then analyze in Appendix B.2
the convergence behavior of the tensor power iterations. Relative to the proof of Lemma 5.1, this
analysis is complicated by the tensor perturbation. We show that there is an initial slow convergence
phase (linear rate rather than quadratic), but as soon as the projection of the iterate onto an
eigenvector is large enough, it enters the quadratic convergence regime until the perturbation
dominates. Finally, we show how errors accrue due to deflation in Appendix B.3, which is rather
subtle and different from deflation with matrix eigendecompositions. This is because when some
initial set of eigenvectors and eigenvalues are accurately recovered, the additional errors due to
deflation are effectively only lower-order terms. These three pieces are assembled in Appendix B.4
to complete the proof of Theorem 5.1.

B.1 Initialization

Consider a set of non-negative numbers λ̃1, λ̃2, . . . , λ̃k ≥ 0. For γ ∈ (0, 1), we say a unit vector
θ0 ∈ Rk is γ-separated relative to i∗ ∈ [k] if

λ̃i∗ |θi∗,0| − max
i∈[k]\{i∗}

λ̃i|θi,0| ≥ γλ̃i|θi∗,0|

(the dependence on λ̃1, λ̃2, . . . , λ̃k is implicit).
The following lemma shows that for any constant γ, with probability at least 1− η, at least one

out of poly(k) log(1/η) i.i.d. random vectors (uniformly distributed over the unit sphere Sk−1) is
γ-separated relative to argmaxi∈[k] λ̃i. (For small enough γ and large enough k, the polynomial is
close to linear in k.)

Lemma B.1. There exists an absolute constant c > 0 such that if positive integer L ≥ 2 satisfies√
ln(L)

ln(k)
·
(
1− ln(ln(L)) + c

4 ln(L)
−
√
ln(8)

ln(L)

)
≥ 1

1− γ
·
(
1 +

√
ln(4)

ln(k)

)
, (10)

the following holds. With probability at least 1/2 over the choice of L i.i.d. random vectors drawn
uniformly distributed over the unit sphere Sk−1 in Rk, at least one of the vectors is γ-separated
relative to argmaxi∈[k] λ̃i. Moreover, with the same c, L, and for any η ∈ (0, 1), with probability
at least 1 − η over L · log2(1/η) i.i.d. uniform random unit vectors, at least one of the vectors is
γ-separated.

Proof. Without loss of generality, assume argmaxi∈[k] λ̃i = 1. Consider a random matrix Z ∈
Rk×L whose entries are independent N (0, 1) random variables; we take the j-th column of Z to
be comprised of the random variables used for the j-th random vector (before normalization).
Specifically, for the j-th random vector,

θi,0 :=
Zi,j√∑k
i′=1 Z

2
i′,j

, i ∈ [n].

It suffices to show that with probability at least 1/2, there is a column j∗ ∈ [L] such that

|Z1,j∗ | ≥ 1

1− γ
max

i∈[k]\{1}
|Zi,j∗ |.
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Since maxj∈[L] |Z1,j | is a 1-Lipschitz function of L independent N (0, 1) random variables, it
follows that

Pr

[∣∣∣max
j∈[L]

|Z1,j | −median
[
max
j∈[L]

|Z1,j |
]∣∣∣ >√2 ln(8)] ≤ 1/4.

Moreover,

median
[
max
j∈[L]

|Z1,j |
]
≥ median

[
max
j∈[L]

Z1,j

]
=: m.

Observe that the cumulative distribution function of maxj∈[L] Z1,j is given by F (z) = Φ(z)L, where

Φ is the standard Gaussian CDF. Since F (m) = 1/2, it follows that m = Φ−1(2−1/L). It can be
checked that

Φ−1(2−1/L) ≥
√
2 ln(L)− ln(ln(L)) + c

2
√
2 ln(L)

for some absolute constant c > 0. Also, let j∗ := argmaxj∈[L] |Z1,j |.
Now for each j ∈ [L], let |Z2:k,j | := max{|Z2,j |, |Z3,j |, . . . , |Zk,j |}. Again, since |Z2:k,j | is a

1-Lipschitz function of k − 1 independent N (0, 1) random variables, it follows that

Pr

[
|Z2:k,j | > E

[
|Z2:k,j |

]
+
√
2 ln(4)

]
≤ 1/4.

Moreover, by a standard argument,

E
[
|Z2:k,j |

]
≤
√
2 ln(k).

Since |Z2:k,j | is independent of |Z1,j | for all j ∈ [L], it follows that the previous two displayed
inequalities also hold with j replaced by j∗.

Therefore we conclude with a union bound that with probability at least 1/2,

|Z1,j∗ | ≥
√
2 ln(L)− ln(ln(L)) + c

2
√
2 ln(L)

−
√
2 ln(8) and |Z2:k,j∗ | ≤

√
2 ln(k) +

√
2 ln(4).

Since L satisfies (10) by assumption, in this event, the j∗-th random vector is γ-separated.

B.2 Tensor power iterations

Recall the update rule used in the power method. Let θt =
∑k

i=1 θi,tvi ∈ Rk be the unit vector at
time t. Then

θt+1 =

k∑
i=1

θi,t+1vi := T̃ (I, θt, θt)/‖T̃ (I, θt, θt)‖.

In this subsection, we assume that T̃ has the form

T̃ =

k∑
i=1

λ̃iv
⊗3
i + Ẽ (11)

where {v1, v2, . . . , vk} is an orthonormal basis, and, without loss of generality,
λ̃1|θ1,t| = max

i∈[k]
λ̃i|θi,t| > 0.
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Also, define
λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]}.

We further assume the error Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I, u, u)‖ ≤ ε̃, ∀u ∈ Sk−1; (12)

‖Ẽ(I, u, u)‖ ≤ ε̃/p, ∀u ∈ Sk−1 s.t. (u�v1)
2 ≥ 1− (3ε̃/λ̃1)

2. (13)

In the next two propositions (Propositions B.1 and B.2) and next two lemmas (Lemmas B.2
and B.3), we analyze the power method iterations using T̃ at some arbitrary iterate θt using
only the property (12) of Ẽ. But throughout, the quantity ε̃ can be replaced by ε̃/p if θt satisfies
(θ�

t v1)
2 ≥ 1− (3ε̃/λ̃1)

2 as per property (13).
Define

Rτ :=

(
θ21,τ

1− θ21,τ

)1/2

, ri,τ :=
λ̃1θ1,τ

λ̃i|θi,τ |
,

γτ := 1− 1

mini �=1 |ri,τ | , δτ :=
ε̃

λ̃1θ21,τ
, κ :=

λ̃max

λ̃1

(14)

for τ ∈ {t, t+ 1}.
Proposition B.1.

min
i �=1

|ri,t| ≥ Rt

κ
, γt ≥ 1− κ

Rt
, θ21,t =

R2
t

1 +R2
t

.

Proposition B.2.

ri,t+1 ≥ r2i,t ·
1− δt

1 + κδtr2i,t
=

1− δt
1
r2i,t

+ κδt
, i ∈ [k], (15)

Rt+1 ≥ Rt · 1− δt
1− γt + δtRt

≥ 1− δt
κ
R2

t
+ δt

. (16)

Proof. Let θ̌t+1 := T̃ (I, θt, θt), so θt+1 = θ̌t+1/‖θ̌t+1‖. Since θ̌i,t+1 = T̃ (vi, θt, θt) = T (vi, θt, θt) +
E(vi, θt, θt), we have

θ̌i,t+1 = λ̃iθ
2
i,t + E(vi, θt, θt), i ∈ [k].

Using the triangle inequality and the fact ‖E(vi, θt, θt)‖ ≤ ε̃, we have

θ̌i,t+1 ≥ λ̃iθ
2
i,t − ε̃ ≥ |θi,t| ·

(
λ̃i|θi,t| − ε̃/|θi,t|

)
(17)

and
|θ̌i,t+1| ≤ |λ̃iθ

2
i,t|+ ε̃ ≤ |θi,t| ·

(
λ̃i|θi,t|+ ε̃/|θi,t|

)
(18)

for all i ∈ [k]. Combining (17) and (18) gives

ri,t+1 =
λ̃1θ1,t+1

λ̃i|θi,t+1|
=

λ̃1θ̌1,t+1

λ̃i|θ̌i,t+1|
≥ r2i,t ·

1− δt

1 + ε̃
λ̃iθ2i,t

= r2i,t ·
1− δt

1 + (λ̃i/λ̃1)δtr2i,t
≥ r2i,t ·

1− δt
1 + κδtr2i,t

.
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Moreover, by the triangle inequality and Hölder’s inequality,( n∑
i=2

[θ̌i,t+1]
2

)1/2

=

( n∑
i=2

(
λ̃iθ

2
i,t + E(vi, θt, θt)

)2)1/2

≤
( n∑

i=2

λ̃2
i θ

4
i,t

)1/2

+

( n∑
i=2

E(vi, θt, θt)
2

)1/2

≤ max
i �=1

λ̃i|θi,t|
( n∑

i=2

θ2i,t

)1/2

+ ε̃

= (1− θ21,t)
1/2 ·

(
max
i �=1

λ̃i|θi,t|+ ε̃/(1− θ21,t)
1/2
)
. (19)

Combining (17) and (19) gives

|θ1,t+1|
(1− θ21,t+1)

1/2
=

|θ̌1,t+1|(∑n
i=2[θ̌i,t+1]2

)1/2 ≥ |θ1,t|
(1− θ21,t)

1/2
· λ̃1|θ1,t| − ε̃/|θ1,t|
maxi �=1 λ̃i|θi,t|+ ε̃/(1− θ21,t)

1/2
.

In terms of Rt+1, Rt, γt, and δt, this reads

Rt+1 ≥ 1− δt

(1− γt)
(
1−θ21,t
θ21,t

)1/2
+ δt

= Rt · 1− δt
1− γt + δtRt

=
1− δt

1−γt
Rt

+ δt
≥ 1− δt

κ
R2

t
+ δt

where the last inequality follows from Proposition B.1.

Lemma B.2. Fix any ρ > 1. Assume

0 ≤ δt < min
{ 1

2(1 + 2κρ2)
,
1− 1/ρ

1 + κρ

}
and γt > 2(1 + 2κρ2)δt.

1. If r2i,t ≤ 2ρ2, then ri,t+1 ≥ |ri,t|
(
1 + γt

2

)
.

2. If ρ2 < r2i,t, then ri,t+1 ≥ min{r2i,t/ρ, 1−δt−1/ρ
κδt

}.
3. γt+1 ≥ min{γt, 1− 1/ρ}.

4. If mini �=1 r
2
i,t > (ρ(1− δt)− 1)/(κδt), then Rt+1 >

1−δt−1/ρ
κδt

· λ̃min

λ̃1
· 1√

k
.

5. If Rt ≤ 1 + 2κρ2, then Rt+1 ≥ Rt

(
1 + γt

3

)
, θ21,t+1 ≥ θ21,t, and δt+1 ≤ δt.

Proof. Consider two (overlapping) cases depending on r2i,t.

• Case 1: r2i,t ≤ 2ρ2. By (15) from Proposition B.2,

ri,t+1 ≥ r2i,t ·
1− δt

1 + κδtr2i,t
≥ |ri,t| · 1

1− γt
· 1− δt
1 + 2κρ2δt

≥ |ri,t|
(
1 +

γt
2

)
where the last inequality uses the assumption γt > 2(1+ 2κρ2)δt. This proves the first claim.
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• Case 2: ρ2 < r2i,t. We split into two sub-cases. Suppose r2i,t ≤ (ρ(1 − δt) − 1)/(κδt). Then,
by (15),

ri,t+1 ≥ r2i,t ·
1− δt

1 + κδtr2i,t
≥ r2i,t ·

1− δt

1 + κδt
ρ(1−δt)−1

κδt

=
r2i,t
ρ
.

Now suppose instead r2i,t > (ρ(1− δt)− 1)/(κδt). Then

ri,t+1 ≥ 1− δt
κδt

ρ(1−δt)−1 + κδt
=
1− δt − 1/ρ

κδt
. (20)

Observe that if mini �=1 r
2
i,t ≤ (ρ(1 − δt) − 1)/(κδt), then ri,t+1 ≥ |ri,t| for all i ∈ [k], and hence

γt+1 ≥ γt. Otherwise we have γt+1 > 1− κδt
1−δt−1/ρ > 1− 1/ρ. This proves the third claim.

If mini �=1 r
2
i,t > (ρ(1 − δt) − 1)/(κδt), then we may apply the inequality (20) from the second

sub-case of Case 2 above to get

Rt+1 =
1(∑

i �=1(λ̃1/λ̃i)2/r2i,t+1

)1/2 >

(
1− δt − 1/ρ

κδt

)
· λ̃min

λ̃1

· 1√
k
.

This proves the fourth claim.
Finally, for the last claim, ifRt ≤ 1+2κρ2, then by (16) from Proposition B.2 and the assumption

γt > 2(1 + 2κρ2)δt,

Rt+1 ≥ Rt · 1− δt
1− γt + δtRt

≥ Rt ·
1− γt

2(1+2κρ2)

1− γt/2
≥ Rt

(
1 + γt · κρ2

1 + 2κρ2

)
≥ Rt

(
1 +

γt
3

)
.

This in turn implies that θ21,t+1 ≥ θ21,t via Proposition B.1, and thus δt+1 ≤ δt.

Lemma B.3. Assume 0 ≤ δt < 1/2 and γt > 0. Pick any β > α > 0 such that

α

(1 + α)(1 + α2)
≥ ε̃

γtλ̃1

,
α

2(1 + α)(1 + β2)
≥ ε̃

λ̃1

.

1. If Rt ≥ 1/α, then Rt+1 ≥ 1/α.

2. If 1/α > Rt ≥ 1/β, then Rt+1 ≥ min{R2
t /(2κ), 1/α}.

Proof. Observe that for any c > 0,

Rt ≥ 1

c
⇔ θ21,t ≥

1

1 + c2
⇔ δt ≤ (1 + c2)ε̃

λ̃1

. (21)

Now consider the following cases depending on Rt.

• Case 1: Rt ≥ 1/α. In this case, we have

δt ≤ (1 + α2)ε̃

λ̃1

≤ αγt
1 + α

by (21) (with c = α) and the condition on α. Combining this with (16) from Proposition B.2
gives

Rt+1 ≥ 1− δt
1−γt
Rt

+ δt
≥ 1− αγt

1+α

(1− γt)α+
αγt
1+α

=
1

α
.
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• Case 2: 1/β ≤ Rt < 1/α. In this case, we have

δt ≤ (1 + β2)ε̃

λ̃1

≤ α

2(1 + α)

by (21) (with c = β) and the conditions on α and β. If δt ≥ 1/(2 +R2
t /κ), then (16) implies

Rt+1 ≥ 1− δt
κ
R2

t
+ δt

≥ 1− 2δt
2δt

≥ 1− α
1+α
α

1+α

=
1

α
.

If instead δt < 1/(2 +R2
t /κ), then (16) implies

Rt+1 ≥ 1− δt
κ
R2

t
+ δt

>
1− 1

2+R2
t /κ

κ
R2

t
+ 1

2+R2
t /κ

=
R2

t

2κ
.

Approximate recovery of a single eigenvector

We now state the main result regarding the approximate recovery of a single eigenvector using
the tensor power method on T̃ . Here, we exploit the special properties of the error Ẽ (both (12)
and (13)).

Lemma B.4. There exists a universal constant C > 0 such that the following holds. Let i∗ :=
argmaxi∈[k] λ̃i|θi,0|. If

ε̃ <
γ0

2(1 + 8κ)
· λ̃min · θ2i∗,0 and N ≥ C ·

(
log(kκ)

γ0
+ log log

pλ̃i∗

ε̃

)
,

then after t ≥ N iterations of the tensor power method on tensor T̃ as defined in (11) and satisfy-
ing (12) and (13), the final vector θt satisfies

θi∗,t ≥
√
1−
(

3ε̃

pλ̃i∗

)2

, ‖θt − vi∗‖ ≤ 4ε̃

pλ̃i∗
, |T̃ (θt, θt, θt)− λ̃i∗ | ≤

(
27κ
( ε̃

pλi∗

)2
+ 2

)
ε̃

p
.

Proof. Assume without loss of generality that i∗ = 1. We consider three phases: (i) iterations before
the first time t such that Rt > 1+2κρ2 = 1+8κ (using ρ := 2), (ii) the subsequent iterations before
the first time t such that Rt ≥ 1/α (where α will be defined below), and finally (iii) the remaining
iterations.

We begin by analyzing the first phase, i.e., the iterates in T1 := {t ≥ 0 : Rt ≤ 1+2κρ2 = 1+8κ}.
Observe that the condition on ε̃ implies

δ0 =
ε̃

λ̃1θ21,0
<

γ0
2(1 + 8κ)

· λ̃min

λ̃1

≤ min

{
γ0

2(1 + 2κρ2)
,

1− 1/ρ

2(1 + 2κρ2)

}
,

and hence the preconditions on δt and γt of Lemma B.2 hold for t = 0. For all t ∈ T1 satisfying the
preconditions, Lemma B.2 implies that δt+1 ≤ δt and γt+1 ≥ min{γt, 1−1/ρ}, so the next iteration
also satisfies the preconditions. Hence by induction, the preconditions hold for all iterations in T1.
Moreover, for all i ∈ [k], we have

|ri,0| ≥ 1

1− γ0
;
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and while t ∈ T1: (i) |ri,t| increases at a linear rate while r2i,t ≤ 2ρ2, and (ii) |ri,t| increases at a
quadratic rate while ρ2 ≤ r2i,t ≤ 1−δt−1/ρ

κδt
. (The specific rates are given, respectively, in Lemma B.2,

claims 1 and 2.) Since 1−δt−1/ρ
κδt

≤ λ̃1
2κε̃ , it follows that mini �=1 r

2
i,t ≤ 1−δt−1/ρ

κδt
for at most

2

γ0
ln

(√
2ρ2

1
1−γ0

)
+ ln

(
ln λ̃1

2κε̃

ln
√
2

)
= O

(
1

γ0
+ log log

λ̃1

ε̃

)
(22)

iterations in T1. As soon as mini �=1 r
2
i,t >

1−δt−1/ρ
κδt

, we have that in the next iteration,

Rt+1 >
1− δt − 1/ρ

κδt
· λ̃min

λ̃1

· 1√
k
≥ 7√

k
;

and all the while Rt is growing at a linear rate (given in Lemma B.2, claim 5). Therefore, there are
at most an additional

1 +
3

γ0
ln

(
1 + 8κ

7/
√
k

)
= O

(
log(kκ)

γ0

)
(23)

iterations in T1 over that counted in (22). Therefore, by combining the counts in (22) and (23), we
have that the number of iterations in the first phase satisfies

|T1| = O

(
log log

λ̃1

ε̃
+
log(kκ)

γ0

)
.

We now analyze the second phase, i.e., the iterates in T2 := {t ≥ 0 : t /∈ T1, Rt < 1/α}. Define

α :=
3ε̃

λ̃1

, β :=
1

1 + 2κρ2
=

1

1 + 8κ
.

Note that for the initial iteration t′ := minT2, we have that Rt′ ≥ 1 + 2κρ2 = 1 + 8κ = 1/β,
and by Proposition B.1, γt′ ≥ 1 − κ/(1 + 8κ) > 7/8. It can be checked that δt, γt, α, and β
satisfy the preconditions of Lemma B.3 for this initial iteration t′. For all t ∈ T2 satisfying these
preconditions, Lemma B.3 implies that Rt+1 ≥ min{Rt, 1/α}, θ21,t+1 ≥ min{θ21,t, 1/(1 + α2)} (via
Proposition B.1), δt+1 ≤ max{δt, (1 + α)2ε̃/λ̃1} (using the definition of δt), and γt+1 ≥ min{γt, 1−
ακ} (via Proposition B.1). Hence the next iteration t + 1 also satisfies the preconditions, and by
induction, so do all iterations in T2. To bound the number of iterations in T2, observe that Rt

increases at a quadratic rate until Rt ≥ 1/α, so

|T2| ≤ ln

(
ln(1/α)

ln((1/β)/(2κ))

)
< ln

(
ln λ̃1

3ε̃

ln 4

)
= O

(
log log

λ̃1

ε̃

)
. (24)

Therefore the total number of iterations before Rt ≥ 1/α is

O

(
log(kκ)

γ0
+ log log

λ̃1

ε̃

)
.

After Rt′′ ≥ 1/α (for t′′ := max(T1 ∪ T2) + 1), we have

θ21,t′′ ≥
1/α2

1 + 1/α2
≥ 1− α2 ≥ 1−

(
3ε̃

λ̃1

)2

.
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Therefore, the vector θt′′ satisfies the condition for property (13) of Ẽ to hold. Now we apply
Lemma B.3 using ε̃/p in place of ε̃, including in the definition of δt (which we call δt):

δt :=
ε̃

pλ̃1θ21,t
;

we also replace α and β with α and β, which we set to

α :=
3ε̃

pλ̃1

, β :=
3ε̃

λ̃1

.

It can be checked that δt′′ ∈ (0, 1/2), γt′′ ≥ 1− 3ε̃κ/λ1 > 0,

α

(1 + α)(1 + α2)
≥ ε̃

p(1− 3ε̃κ/λ1)λ̃1

≥ ε̃

pγt′′ λ̃1

,
α

2(1 + α)(1 + β
2
)
≥ ε̃

pλ̃1

.

Therefore, the preconditions of Lemma B.3 are satisfied for the initial iteration t′′ in this final
phase, and by the same arguments as before, the preconditions hold for all subsequent iterations
t ≥ t′′. Initially, we have Rt′′ ≥ 1/α ≥ 1/β, and by Lemma B.3, we have that Rt increases at a
quadratic rate in this final phase until Rt ≥ 1/α. So the number of iterations before Rt ≥ 1/α can
be bounded as

ln

(
ln(1/α)

ln((1/β)/(2κ))

)
= ln

(
ln pλ̃1

3ε̃

ln
(
λ1
3ε̃ · 1

2κ

)) ≤ ln ln
pλ̃1

3ε̃
= O

(
log log

pλ̃1

ε̃

)
.

Once Rt ≥ 1/α, we have

θ21,t ≥ 1−
(
3ε̃

pλ̃1

)2

.

Since sign(θ1,t) = r1,t ≥ r21,t−1 · (1 − δt−1)/(1 + κδt−1r
2
1,t−1) = (1 − δt−1)/(1 + κδt−1) > 0 by

Proposition B.2, we have θ1,t > 0. Therefore we can conclude that

‖θt − v1‖ =
√
2(1− θ1,t) ≤

√
2

(
1−
√
1− (3ε̃/(pλ̃1))2

)
≤ 4ε̃/(pλ̃1).
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Finally,

|T̃ (θt, θt, θt)− λ̃1| =
∣∣∣∣λ̃1(θ

3
1,t − 1) +

k∑
i=2

λ̃iθ
3
i,t + Ẽ(θt, θt, θt)

∣∣∣∣
≤ λ̃1|θ31,t − 1|+

k∑
i=2

λ̃i|θi,t|θ2i,t + ‖Ẽ(I, θt, θt)‖

≤ λ̃1

(
1− θ1,t + |θ1,t(1− θ21,t)|

)
+max

i �=1
λ̃i|θi,t|

k∑
i=2

θ2i,t + ‖Ẽ(I, θt, θt)‖

≤ λ̃1

(
1− θ1,t + |θ1,t(1− θ21,t)|

)
+max

i �=1
λ̃i

√
1− θ21,t

k∑
i=2

θ2i,t + ‖Ẽ(I, θt, θt)‖

= λ̃1

(
1− θ1,t + |θ1,t(1− θ21,t)|

)
+max

i �=1
λ̃i(1− θ21,t)

3/2 + ‖Ẽ(I, θt, θt)‖

≤ λ̃1 · 3
(
3ε̃

pλ̃1

)2

+ κλ̃1 ·
(
3ε̃

pλ̃1

)3

+
ε̃

p

≤ (27κ · (ε̃/pλ̃1)
2 + 2)ε̃

p
.

B.3 Deflation

Lemma B.5. Fix some ε̃ ≥ 0. Let {v1, v2, . . . , vk} be an orthonormal basis for Rk, and λ1, λ2, . . . , λk ≥
0 with λmin := mini∈[k] λi. Also, let {v̂1, v̂2, . . . , v̂k} be a set of unit vectors in Rk (not necessarily

orthogonal), λ̂1, λ̂2, . . . , λ̂k ≥ 0 be non-negative scalars, and define

Ei := λiv
⊗3
i − λ̂iv̂

⊗3
i , i ∈ [k].

Pick any t ∈ [k]. If

|λ̂i − λi| ≤ ε̃,

‖v̂i − vi‖ ≤ min{
√
2, 2ε̃/λi}

for all i ∈ [t], then for any unit vector u ∈ Sk−1,

∥∥∥∥ t∑
i=1

Ei(I, u, u)
∥∥∥∥2
2

≤
(
4(5 + 11ε̃/λmin)

2 + 128(1 + ε̃/λmin)
2(ε̃/λmin)

2

)
ε̃2

t∑
i=1

(u�vi)
2

+ 64(1 + ε̃/λmin)
2ε̃2

t∑
i=1

(ε̃/λi)
2 + 2048(1 + ε̃/λmin)

2ε̃2
( t∑

i=1

(ε̃/λi)
3

)2

.

In particular, for any Δ ∈ (0, 1), there exists a constant Δ′ > 0 (depending only on Δ) such that
ε̃ ≤ Δ′λmin/

√
k implies ∥∥∥∥ t∑

i=1

Ei(I, u, u)
∥∥∥∥2
2

≤
(
Δ+ 100

t∑
i=1

(u�vi)
2

)
ε̃2.
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Proof. For any unit vector u and i ∈ [t], the error term

Ei(I, u, u) = λi(u
�vi)

2vi − λ̂i(u
�v̂i)

2v̂i

lives in span{vi, v̂i}; this space is the same as span{vi, v̂⊥i }, where

v̂⊥i := v̂i − (v�
i v̂i)vi

is the projection of v̂i onto the subspace orthogonal to vi. Since ‖v̂i− vi‖2 = 2(1− v�
i v̂i), it follows

that
ci := v�

i v̂i = 1− ‖v̂i − vi‖2/2 ≥ 0

(the inequality follows from the assumption ‖v̂i − vi‖ ≤
√
2, which in turn implies 0 ≤ ci ≤ 1). By

the Pythagorean theorem and the above inequality for ci,

‖v̂⊥i ‖2 = 1− c2i ≤ ‖v̂i − vi‖2.

Later, we will also need the following bound, which is easily derived from the above inequalities
and the triangle inequality:

|1− c3i | = |1− ci + ci(1− c2i )| ≤ 1− ci + |ci(1− c2i )| ≤ 1.5‖v̂i − vi‖2.

We now express Ei(I, u, u) in terms of the coordinate system defined by vi and v̂⊥i , depicted
below.

ci

⎧⎪⎨⎪⎩
vi v̂i

subspace
orthogonal
to vi span{vi, v̂⊥i }⊥

v̂⊥i /‖v̂⊥i ‖

v̂⊥i

Define
ai := u�vi and bi := u�(v̂⊥i /‖v̂⊥i ‖).

(Note that the part of u living in span{vi, v̂⊥i }⊥ is irrelevant for analyzing Ei(I, u, u).) We have

Ei(I, u, u) = λi(u
�vi)

2vi − λ̂i(u
�v̂i)

2v̂i

= λia
2
i vi − λ̂i

(
aici + ‖v̂⊥i ‖bi

)2(
civi + v̂⊥i

)
= λia

2
i vi − λ̂i

(
a2i c

2
i + 2‖v̂⊥i ‖aibici + ‖v̂⊥i ‖2b2i

)
civi − λ̂i

(
aici + ‖v̂⊥i ‖bi

)2
v̂⊥i

=
(
(λi − λ̂ic

3
i )a

2
i − 2λ̂i‖v̂⊥i ‖aibic2i − λ̂i‖v̂⊥i ‖2b2i ci

)
︸ ︷︷ ︸

=:Ai

vi − λ̂i‖v̂⊥i ‖
(
aici + ‖v̂⊥i ‖bi

)2︸ ︷︷ ︸
=:Bi

(
v̂⊥i /‖v̂⊥i ‖

)
= Aivi −Bi

(
v̂⊥i /‖v̂⊥i ‖

)
.
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The overall error can also be expressed in terms of the Ai and Bi:∥∥∥∥ t∑
i=1

Ei(I, u, u)
∥∥∥∥2
2

=

∥∥∥∥ t∑
i=1

Aivi −
t∑

i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖)

∥∥∥∥2
2

≤ 2

∥∥∥∥ t∑
i=1

Aivi

∥∥∥∥2 + 2

∥∥∥∥ t∑
i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖)

∥∥∥∥2
2

≤ 2

t∑
i=1

A2
i + 2

( t∑
i=1

|Bi|
)2

(25)

where the first inequality uses the fact (x + y)2 ≤ 2(x2 + y2) and the triangle inequality, and the
second inequality uses the orthonormality of the vi and the triangle inequality.

It remains to bound A2
i and |Bi| in terms of |ai|, λi, and ε̃. The first term, A2

i , can be bounded
using the triangle inequality and the various bounds on |λi − λ̂i|, ‖v̂i − vi‖, ‖v̂⊥i ‖, and ci:

|Ai| ≤ (|λi − λ̂i|c3i + λi|c3i − 1|)a2i + 2(λi + |λi − λ̂i|)‖v̂⊥i ‖|aibi|c2i + (λi + |λi − λ̂i|)‖v̂⊥i ‖2b2i ci
≤ (|λi − λ̂i|+ 1.5λi‖v̂i − vi‖2 + 2(λi + |λi − λ̂i|)‖v̂i − vi‖)|ai|+ (λi + |λi − λ̂i|)‖v̂i − vi‖2
≤ (ε̃+ 7ε̃2/λi + 4ε̃+ 4ε̃2/λi)|ai|+ 4ε̃2/λi + ε̃3/λ2

i

= (5 + 11ε̃/λi)ε̃|ai|+ 4(1 + ε̃/λi)ε̃
2/λi,

and therefore (via (x+ y)2 ≤ 2(x2 + y2))

A2
i ≤ 2(5 + 11ε̃/λi)

2ε̃2a2i + 32(1 + ε̃/λi)
2ε̃4/λ2

i .

The second term, |Bi|, is bounded similarly:

|Bi| ≤ 2(λi + |λi − λ̂i|)‖v̂⊥i ‖2(a2i + ‖v̂⊥i ‖2)
≤ 2(λi + |λi − λ̂i|)‖v̂i − vi‖2(a2i + ‖v̂i − vi‖2)
≤ 8(1 + ε̃/λi)(ε̃

2/λi)a
2
i + 32(1 + ε̃/λi)ε̃

4/λ3
i .
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Therefore, using the inequality from (25) and again (x+ y)2 ≤ 2(x2 + y2),∥∥∥∥ t∑
i=1

Ei(I, u, u)
∥∥∥∥2
2

≤ 2

t∑
i=1

A2
i + 2

( t∑
i=1

|Bi|
)2

≤ 4(5 + 11ε̃/λmin)
2ε̃2

t∑
i=1

a2i + 64(1 + ε̃/λmin)
2ε̃2

t∑
i=1

(ε̃/λi)
2

+ 2

(
8(1 + ε̃/λmin)(ε̃

2/λmin)

t∑
i=1

a2i + 32(1 + ε̃/λmin)ε̃

t∑
i=1

(ε̃/λi)
3

)2

≤ 4(5 + 11ε̃/λmin)
2ε̃2

t∑
i=1

a2i + 64(1 + ε̃/λmin)
2ε̃2

t∑
i=1

(ε̃/λi)
2

+ 128(1 + ε̃/λmin)
2(ε̃/λmin)

2ε̃2
t∑

i=1

a2i + 2048(1 + ε̃/λmin)
2ε̃2
( t∑

i=1

(ε̃/λi)
3

)2

=

(
4(5 + 11ε̃/λmin)

2 + 128(1 + ε̃/λmin)
2(ε̃/λmin)

2

)
ε̃2

t∑
i=1

a2i

+ 64(1 + ε̃/λmin)
2ε̃2

t∑
i=1

(ε̃/λi)
2 + 2048(1 + ε̃/λmin)

2ε̃2
( t∑

i=1

(ε̃/λi)
3

)2

.

B.4 Proof of the main theorem

Theorem 5.1 restated. Let T̂ = T +E ∈ Rk×k×k, where T is a symmetric tensor with orthogonal
decomposition T =

∑k
i=1 λiv

⊗3
i where each λi > 0, {v1, v2, . . . , vk} is an orthonormal basis, and E

has operator norm ε := ‖E‖. Define λmin := min{λi : i ∈ [k]}, and λmax := max{λi : i ∈ [k]}.
There exists universal constants C1, C2, C3 > 0 such that the following holds. Pick any η ∈ (0, 1),
and suppose

ε ≤ C1 · λmin

k
, N ≥ C2 ·

(
log(k) + log log

(λmax

ε

))
,

and√
ln(L/ log2(k/η))

ln(k)
·
(
1− ln(ln(L/ log2(k/η))) + C3

4 ln(L/ log2(k/η))
−
√

ln(8)

ln(L/ log2(k/η))

)
≥ 1.02

(
1 +

√
ln(4)

ln(k)

)
.

(Note that the condition on L holds with L = poly(k) log(1/η).) Suppose that Algorithm 1 is
iteratively called k times, where the input tensor is T̂ in the first call, and in each subsequent call,
the input tensor is the deflated tensor returned by the previous call. Let (v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k)
be the sequence of estimated eigenvector/eigenvalue pairs returned in these k calls. With probability
at least 1− η, there exists a permutation π on [k] such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],
and ∥∥∥∥T − k∑

j=1

λ̂j v̂
⊗3
j

∥∥∥∥ ≤ 55ε.
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Proof. We prove by induction that for each i ∈ [k] (corresponding to the i-th call to Algorithm 1),
with probability at least 1 − iη/k, there exists a permutation π on [k] such that the following
assertions hold.

1. For all j ≤ i, ‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j) and |λπ(j) − λ̂j | ≤ 12ε.

2. The error tensor

Ẽi+1 :=

(
T̂ −

∑
j≤i

λ̂j v̂
⊗3
j

)
−
∑

j≥i+1

λπ(j)v
⊗3
π(j) = E +

∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

)
satisfies

‖Ẽi+1(I, u, u)‖ ≤ 56ε, ∀u ∈ Sk−1; (26)

‖Ẽi+1(I, u, u)‖ ≤ 2ε, ∀u ∈ Sk−1 s.t. ∃j ≥ i+ 1 � (u�vπ(j))
2 ≥ 1− (168ε/λπ(j))

2. (27)

We actually take i = 0 as the base case, so we can ignore the first assertion, and just observe that
for i = 0,

Ẽ1 = T̂ −
k∑

j=1

λiv
⊗3
i = E.

We have ‖Ẽ1‖ = ‖E‖ = ε, and therefore the second assertion holds.
Now fix some i ∈ [k], and assume as the inductive hypothesis that, with probability at least

1− (i− 1)η/k, there exists a permutation π such that two assertions above hold for i− 1 (call this
Eventi−1). The i-th call to Algorithm 1 takes as input

T̃i := T̂ −
∑

j≤i−1

λ̂j v̂
⊗3
j ,

which is intended to be an approximation to

Ti :=
∑
j≥i

λπ(j)v
⊗3
π(j).

Observe that
T̃i − Ti = Ẽi,

which satisfies the second assertion in the inductive hypothesis. We may write Ti =
∑k

l=1 λ̃lv
⊗3
l

where λ̃l = λl whenever π
−1(l) ≥ i, and λ̃l = 0 whenever π−1(l) ≤ i − 1. This form is used when

referring to T̃ or the λ̃i in preceding lemmas (in particular, Lemma B.1 and Lemma B.4).

By Lemma B.1, with conditional probability at least 1− η/k given Eventi−1, at least one of θ
(τ)
0

for τ ∈ [L] is γ-separated relative to π(jmax), where jmax := argmaxj≥i λπ(j), (for γ = 0.01; call this
Event′i; note that the application of Lemma B.1 determines C3). Therefore Pr[Eventi−1 ∩ Event′i] =
Pr[Event′i|Eventi−1] Pr[Eventi−1] ≥ (1 − η/k)(1 − (i − 1)η/k) ≥ 1 − iη/k. It remains to show that
Eventi−1 ∩ Event′i ⊆ Eventi; so henceforth we condition on Eventi−1 ∩ Event′i.

Set

C1 := min
{
(56 · 9 · 102)−1, (100 · 168)−1,Δ′ from Lemma B.5 with Δ = 1/50

}
. (28)
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For all τ ∈ [L] such that θ
(τ)
0 is γ-separated relative to π(jmax), we have (i) |θ(τ)jmax,0

| ≥ 1/
√
k, and

(ii) that by Lemma B.4 (using ε̃/p := 2ε, κ := 1, and i∗ := π(jmax), and providing C2),

|T̃i(θ
(τ)
N , θ

(τ)
N , θ

(τ)
N )− λπ(jmax)| ≤ 5ε

(notice by definition that γ ≥ 1/100 implies γ0 ≥ 1 − /(1 + γ) ≥ 1/101, thus it follows from the
bounds on the other quantities that ε̃ = 2pε ≤ 56C1 · λmin

k < γ0
2(1+8κ) · λ̃min · θ2i∗,0 as necessary).

Therefore θN := θ
(τ∗)
N must satisfy

T̃i(θN , θN , θN ) = max
τ∈[L]

T̃i(θ
(τ)
N , θ

(τ)
N , θ

(τ)
N ) ≥ max

j≥i
λπ(j) − 5ε = λπ(jmax) − 5ε.

On the other hand, by the triangle inequality,

T̃i(θN , θN , θN ) ≤
∑
j≥i

λπ(j)θ
3
π(j),N + |Ẽi(θN , θN , θN )|

≤
∑
j≥i

λπ(j)|θπ(j),N |θ2π(j),N + 56ε

≤ λπ(j∗)|θπ(j∗),N |+ 56ε

where j∗ := argmaxj≥i λπ(j)|θπ(j),N |. Therefore

λπ(j∗)|θπ(j∗),N | ≥ λπ(jmax) − 5ε− 56ε ≥ 4

5
λπ(jmax).

Squaring both sides and using the fact that θ2π(j∗),N + θ2π(j),N ≤ 1 for any j 
= j∗,

(
λπ(j∗)θπ(j∗),N

)2 ≥ 16

25

(
λπ(jmax)θπ(j∗),N

)2
+
16

25

(
λπ(jmax)θπ(j),N

)2
≥ 16

25

(
λπ(j∗)θπ(j∗),N

)2
+
16

25

(
λπ(j)θπ(j),N

)2
which in turn implies

λπ(j)|θπ(j),N | ≤
3

4
λπ(j∗)|θπ(j∗),N |, j 
= j∗.

This means that θN is (1/4)-separated relative to π(j∗). Also, observe that

|θπ(j∗),N | ≥
4

5
· λπ(jmax)

λπ(j∗)
≥ 4

5
,

λπ(jmax)

λπ(j∗)
≤ 5

4
.

Therefore by Lemma B.4 (using ε̃/p := 2ε, γ := 1/4, and κ := 5/4), executing another N power
iterations starting from θN gives a vector θ̂ that satisfies

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

Since v̂i = θ̂ and λ̂i = λ̂, the first assertion of the inductive hypothesis is satisfied, as we can modify
the permutation π by swapping π(i) and π(j∗) without affecting the values of {π(j) : j ≤ i − 1}
(recall j∗ ≥ i).
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We now argue that Ẽi+1 has the required properties to complete the inductive step. By
Lemma B.5 (using ε̃ := 5ε and Δ := 1/50, the latter providing one upper bound on C1 as per
(28)), we have for any unit vector u ∈ Sk−1,∥∥∥∥∥

(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤
(
1/50 + 100

i∑
j=1

(u�vπ(j))
2

)1/2

5ε ≤ 55ε. (29)

Therefore by the triangle inequality,

‖Ẽi+1(I, u, u)‖ ≤ ‖E(I, u, u)‖+
∥∥∥∥∥
(∑

j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤ 56ε.

Thus the bound (26) holds.
To prove that (27) holds, pick any unit vector u ∈ Sk−1 such that there exists j′ ≥ i + 1 with

(u�vπ(j′))
2 ≥ 1−(168ε/λπ(j′))

2. We have (via the second bound on C1 in (28) and the corresponding

assumed bound ε ≤ C1 · λmin
k )

100

i∑
j=1

(u�vπ(j))
2 ≤ 100

(
1− (u�vπ(j′))

2
)
≤ 100

(
168ε

λπ(j′)

)2

≤ 1

50
,

and therefore (
1/50 + 100

i∑
j=1

(u�vπ(j))
2

)1/2

5ε ≤ (1/50 + 1/50)1/25ε ≤ ε.

By the triangle inequality, we have ‖Ẽi+1(I, u, u)‖ ≤ 2ε. Therefore (27) holds, so the second
assertion of the inductive hypothesis holds. Thus Eventi−1 ∩ Event′i ⊆ Eventi, and Pr[Eventi] ≥
Pr[Eventi−1 ∩ Event′i] ≥ 1 − iη/k. We conclude that by the induction principle, there exists a
permutation π such that two assertions hold for i = k, with probability at least 1− η.

From the last induction step (i = k), it is also clear from (29) that ‖T −∑k
j=1 λ̂j v̂

⊗3
j ‖ ≤ 55ε (in

Eventk−1 ∩ Event′k). This completes the proof of the theorem.

C Variant of robust power method that uses a stopping condition

In this section we analyze a variant of Algorithm 1 that uses a stopping condition. The variant is
described in Algorithm 2. The key difference is that the inner for-loop is repeated until a stopping
condition is satisfied (rather than explicitly L times). The stopping condition ensures that the
power iteration is converging to an eigenvector, and it will be satisfied within poly(k) random
restarts with high probability. The condition depends on one new quantity, r, which should be set
to r := k −# deflation steps so far (i.e., the first call to Algorithm 2 uses r = k, the second call
uses r = k − 1, and so on).

C.1 Stopping condition analysis

For a matrix A, we use ‖A‖F := (
∑

i,j A
2
i,j)

1/2 to denote its Frobenius norm. For a third-order

tensor A, we use ‖A‖F := (
∑

i ‖A(I, I, ei)‖2F )1/2 = (
∑

i ‖A(I, I, vi)‖2F )1/2.
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Algorithm 2 Robust tensor power method with stopping condition

input symmetric tensor T̃ ∈ Rk×k×k, number of iterations N , expected rank r.
output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: repeat
2: Draw θ0 uniformly at random from the unit sphere in Rk.
3: for t = 1 to N do
4: Compute power iteration update

θt :=
T̃ (I, θt−1, θt−1)

‖T̃ (I, θt−1, θt−1)‖
(30)

5: end for
6: until the following stopping condition is satisfied:

|T̃ (θN , θN , θN )| ≥ max

{
1

2
√
r
‖T̃‖F , 1

1.05
‖T̃ (I, I, θN )‖F

}
.

7: Do N power iteration updates (30) starting from θN to obtain θ̂, and set λ̂ := T̃ (θ̂, θ̂, θ̂).
8: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ − λ̂ θ̂⊗3.

Define T̃ as before in (11):

T̃ :=
k∑

i=1

λ̃iv
⊗3
i + Ẽ.

We assume Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I, u, u)‖ ≤ ε̃, ∀u ∈ Sk−1;

‖Ẽ(I, u, u)‖ ≤ ε̃/p, ∀u ∈ Sk−1 s.t. (u�v1)
2 ≥ 1− (3ε̃/λ̃1)

2;

‖Ẽ‖F ≤ ε̃F .

Assume that not all λ̃i are zero, and define

λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]},

� := |{i ∈ [k] : λ̃i > 0}|, λ̃avg :=

(
1

�

k∑
i=1

λ̃2
i

)1/2

.

We show in Lemma C.1 that if the stopping condition is satisfied by a vector θ, then it must be
close to an eigenvector of T̃ . Then in Lemma C.2, we show that the stopping condition is satisfied
by θN when θ0 is a good starting point (as per the conditions of Lemma B.4).

Lemma C.1. Fix any vector θ =
∑k

i=1 θivi, and let i∗ := argmaxi∈[k] λ̃i|θi|. Assume that � ≥ 1

and that for some α ∈ (0, 1/20) and β ≥ 2α/
√
k,

ε̃ ≤ α · λ̃min√
k
, ε̃F ≤

√
�
(1
2
− α

β
√
k

)
· λ̃avg.
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If the stopping condition

|T̃ (θ, θ, θ)| ≥ max

{
β√
�
‖T̃‖F , 1

1 + α
‖T̃ (I, I, θ)‖F

}
(31)

holds, then

1. λ̃i∗ ≥ βλ̃avg/2 and λ̃i∗ |θi∗ | > 0;

2. maxi �=i∗ λ̃i|θi| ≤
√
7α · λ̃i∗ |θi∗ |;

3. θi∗ ≥ 1− 2α.

Proof. Without loss of generality, assume i∗ = 1. First, we claim that λ̃1|θ1| > 0. By the triangle
inequality,

|T̃ (θ, θ, θ)| ≤
k∑

i=1

λ̃iθ
3
i + |Ẽ(θ, θ, θ)| ≤

k∑
i=1

λ̃i|θi|θ2i + ε̃ ≤ λ̃1|θ1|+ ε̃.

Moreover,

‖T̃‖F ≥
∥∥∥∥ k∑
i=1

λ̃iv
⊗3
i

∥∥∥∥
F

− ‖Ẽ‖F

=

( k∑
j=1

∥∥∥∥ k∑
i=1

λ̃iviv
�
i (v

�
i vj)

∥∥∥∥2
F

)1/2

− ‖Ẽ‖F

=

( k∑
j=1

∥∥∥∥λ̃jvjv
�
j

∥∥∥∥2
F

)1/2

− ‖Ẽ‖F

=

( k∑
j=1

λ̃2
j

)1/2

− ‖Ẽ‖F

≥
√
�λ̃avg − ε̃F .

By assumption, |T̃ (θ, θ, θ)| ≥ (β/
√
�)‖T̃‖F , so

λ̃1|θ1| ≥ βλ̃avg − β√
�
ε̃F − ε̃ ≥ βλ̃avg − β

(1
2
− α

β
√
k

)
λ̃avg − α√

k
λ̃min ≥ β

2
λ̃avg

where the second inequality follows from the assumptions on ε̃ and ε̃F . Since β > 0, λ̃avg > 0, and
|θ1| ≤ 1, it follows that

λ̃1 ≥ β

2
λ̃avg, λ̃1|θ1| > 0.

This proves the first claim.
Now we prove the second claim. Define M̃ := T̃ (I, I, θ) =

∑k
i=1 λ̃iθiviv

�
i + Ẽ(I, I, θ) (a sym-

metric k × k matrix), and consider its eigenvalue decomposition

M̃ =

k∑
i=1

φiuiu
�
i
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where, without loss of generality, |φ1| ≥ |φ2| ≥ · · · ≥ |φk| and {u1, u2, . . . , uk} is an orthonormal
basis. Let M :=

∑k
i=1 λ̃iθiviv

�
i , so M̃ = M + Ẽ(I, I, θ). Note that the λ̃i|θi| and |φi| are the

singular values of M and M̃ , respectively. We now show that the assumption on |T̃ (θ, θ, θ)| implies
that almost all of the energy in M is contained in its top singular component.

By Weyl’s theorem,

|φ1| ≤ λ̃1|θ1|+ ‖M̃ −M‖ ≤ λ̃1|θ1|+ ε̃.

Next, observe that the assumption ‖T̃ (I, I, θ)‖F ≤ (1+α)T̃ (θ, θ, θ) is equivalent to (1+α)θ�M̃θ ≥
‖M̃‖F . Therefore, using the fact that |φ1| = maxu∈Sk−1 |u�M̃u|, the triangle inequality, and the
fact ‖A‖F ≤

√
k‖A‖ for any matrix A ∈ Rk×k,

(1 + α)|φ1| ≥ (1 + α)θ�M̃θ ≥ ‖M̃‖F (32)

≥
∥∥∥∥ k∑
i=1

λ̃iθiviv
�
i

∥∥∥∥
F

− ∥∥Ẽ(I, I, θ)∥∥
F

≥
( k∑

i=1

λ̃2
i θ

2
i

)1/2

−
√
k‖Ẽ(I, I, θ)‖

≥
( k∑

i=1

λ̃2
i θ

2
i

)1/2

−
√
kε̃.

Combining these bounds on |φ1| gives

λ̃1|θ1|+ ε̃ ≥ 1

1 + α

[( k∑
i=1

λ̃2
i θ

2
i

)1/2

−
√
kε̃

]
. (33)

The assumption ε̃ ≤ αλ̃min/
√
k implies that

√
kε̃ ≤ αλ̃min ≤ α

( k∑
i=1

λ̃2
i θ

2
i

)1/2

.

Moreover, since λ̃1|θ1| > 0 (by the first claim) and λ̃1|θ1| = maxi∈[k] λ̃i|θi|, it follows that

λ̃1|θ1| ≥ λ̃minmax
i∈[k]

|θi| ≥ λ̃min√
k
, (34)

so we also have
ε̃ ≤ αλ̃1|θ1|.

Applying these bounds on ε̃ to (33), we obtain

λ̃1|θ1| ≥ 1− α

(1 + α)2

( k∑
i=1

λ̃2
i θ

2
i

)1/2

≥ 1− α

(1 + α)2

(
λ̃2
1θ

2
1 +max

i �=1
λ̃2
i θ

2
i

)1/2

which in turn implies (for α ∈ (0, 1/20))

max
i �=1

λ̃2
i θ

2
i ≤

(
(1 + α)4

(1− α)2
− 1

)
· λ̃2

1θ
2
1 ≤ 7α · λ̃2

1θ
2
1.

50



Therefore maxi �=1 λ̃i|θi| ≤
√
7α · λ̃1|θ1|, proving the second claim.

Now we prove the final claim. This is done by (i) showing that θ has a large projection onto
u1, (ii) using an SVD perturbation argument to show that ±u1 is close to v1, and (iii) concluding
that θ has a large projection onto v1.

We begin by showing that (u�
1 θ)

2 is large. Observe that from (32), we have (1 + α)2φ2
1 ≥

‖M̃‖2F ≥ φ2
1 +maxi �=1 φ

2
i , and therefore

max
i �=1

|φi| ≤
√
2α+ α2 · |φ1|.

Moreover, by the triangle inequality,

|θ�M̃θ| ≤
k∑

i=1

|φi|(u�
i θ)

2 ≤ |φ1|(u�
1 θ)

2 +max
i �=1

|φi|
(
1− (u�

1 θ)
2
)
= (u�

1 θ)
2
(|φ1| −max

i �=1
|φi|
)
+max

i �=1
|φi|.

Using (32) once more, we have |θ�M̃θ| ≥ ‖M̃‖F /(1 + α) ≥ |φ1|/(1 + α), so

(u�
1 θ)

2 ≥
1

1+α −maxi �=1
|φi|
|φ1|

1−maxi �=1
|φi|
|φ1|

= 1− α

(1 + α)
(
1−maxi �=1

|φi|
|φ1|
) ≤ 1− α

(1 + α)(1−√2α+ α2)
.

Now we show that (u�
1 v1)

2 is also large. By the second claim, the assumption on ε̃, and (34),

λ̃1|θ1| −max
i �=1

λ̃i|θi| > (1−
√
7α) · λ̃1|θ1| ≥ (1−

√
7α) · λ̃min/

√
k.

Combining this with Weyl’s theorem gives

|φ1| −max
i �=1

λ̃i|θi| ≥ λ̃1|θ1| − ε̃−max
i �=1

λ̃i|θi| ≥ (1− (α+
√
7α)) · λ̃min/

√
k,

so we may apply Wedin’s theorem to obtain

(u�
1 v1)

2 ≥ 1−
( ‖Ẽ(I, I, θ)‖
|φ1| −maxi �=1 λ̃i|θi|

)2

≥ 1−
(

α

1− (α+
√
7α)

)2

.

It remains to show that θ1 = v�
1 θ is large. Indeed, by the triangle inequality, Cauchy-Schwarz, and
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the above inequalities on (u�
1 v1)

2 and (u�
1 θ)

2,

|v�
1 θ| =

∣∣∣∣ k∑
i=1

(u�
i v1)(u

�
i θ)

∣∣∣∣
≥ |u�

1 v1||u�
1 θ| −

k∑
i=2

|u�
i v1||u�

i θ|

≥ |u�
1 v1||u�

1 θ| −
( k∑

i=2

(u�
i v1)

2

)1/2( k∑
i=2

(u�
i θ)

2

)1/2

= |u�
1 v1||u�

1 θ| −
((

1− (u�
i v1)

2
)(
1− (u�

i θ)
2
))1/2

≥
((

1− α

(1 + α)(1−√2α+ α2)

)(
1−
(

α

1− (α+
√
7α)

)2))1/2

−
(

α

(1 + α)(1−√2α+ α2)
·
(

α

1− (α+
√
7α)

)2
)1/2

≥ 1− 2α

for α ∈ (0, 1/20). Moreover, by assumption we have T̃ (θ, θ, θ) ≥ 0, and

T̃ (θ, θ, θ) =

k∑
i=1

λ̃iθ
3
i + Ẽ(θ, θ, θ)

= λ̃1θ
3
1 +

k∑
i=2

λ̃iθ
3
i + Ẽ(θ, θ, θ)

≤ λ̃1θ
3
1 +max

i �=1
λ̃i|θi|

k∑
i=2

θ2i + ε̃

≤ λ̃1θ
3
1 +

√
7αλ̃1|θ1|(1− θ21) + ε̃ (by the second claim)

≤ λ̃1|θ1|3
(
sign(θ1) +

√
7α

(1− 2α)2
−
√
7α+

α

(1− 2α)3

)
(since |θ1| ≥ 1− 2α)

< λ̃1|θ1|3
(
sign(θ1) + 1

)
so sign(θ1) > −1, meaning θ1 > 0. Therefore θ1 = |θ1| ≥ 1− 2α. This proves the final claim.

Lemma C.2. Fix α, β ∈ (0, 1). Assume λ̃i∗ = maxi∈[k] λ̃i and

ε̃ ≤ min

{
α

5
√
k + 7

,
1− β

7

}
· λ̃i∗ , ε̃F ≤

√
� · 1− β

2β
· λ̃i∗ .

To the conclusion of Lemma B.4, it can be added that the stopping condition (31) is satisfied by
θ = θt.
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Proof. Without loss of generality, assume i∗ = 1. By the triangle inequality and Cauchy-Schwarz,

‖T̃ (I, I, θt)‖F ≤ λ̃1|θ1,t|+
∑
i �=1

λi|θi,t|+ ‖Ẽ(I, I, θt)‖F ≤ λ̃1|θ1,t|+ λ̃1

√
k

(∑
i �=1

θ2i,t

)1/2

+
√
kε̃

≤ λ̃1|θ1,t|+ 3
√
kε̃

p
+
√
kε̃.

where the last step uses the fact that θ21,t ≥ 1− (3ε̃/(pλ̃1))
2. Moreover,

T̃ (θt, θt, θt) ≥ λ̃1 −
(
27
( ε̃

pλ1

)2
+ 2

)
ε̃

p
.

Combining these two inequalities with the assumption on ε̃ implies that

T̃ (θt, θt, θt) ≥ 1

1 + α
‖T̃ (I, I, θt)‖F .

Using the definition of the tensor Frobenius norm, we have

1√
�
‖T̃‖F ≤ 1√

�

∥∥∥∥ k∑
i=1

λ̃iv
⊗3
i

∥∥∥∥
F

+
1√
�
‖Ẽ‖F = λ̃avg +

1√
�
‖Ẽ‖F ≤ λ̃avg +

1√
�
ε̃F .

Combining this with the above inequality implies

T̃ (I, I, θt) ≥ β√
�
‖T̃‖F .

Therefore the stopping condition (31) is satisfied.

C.2 Sketch of analysis of Algorithm 2

The analysis of Algorithm 2 is very similar to the proof of Theorem 5.1 for Algorithm 1, so here
we just sketch the essential differences.

First, the guarantee afforded to Algorithm 2 is somewhat different than Theorem 5.1. Specifi-
cally, it is of the following form: (i) under appropriate conditions, upon termination, the algorithm
returns an accurate decomposition, and (ii) the algorithm terminates after poly(k) random restarts
with high probability.

The conditions on ε and N are the same (but for possibly different universal constants C1, C2).
In Lemma C.1 and Lemma C.2, there is reference to a condition on the Frobenius norm of E, but
we may use the inequality ‖E‖F ≤ k‖E‖ ≤ kε so that the condition is subsumed by the ε condition.

Now we outline the differences relative to the proof of Theorem 5.1. The basic structure of the
induction argument is the same. In the induction step, we argue that (i) if the stopping condition
is satisfied, then by Lemma C.1 (with α = 0.05 and β = 1/2), we have a vector θN such that, for
some j∗ ≥ i,

1. λπ(j∗) ≥ λπ(jmax)/(4
√
k);

2. θN is (1/4)-separated relative to π(j∗);
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3. θπ(j∗),N ≥ 4/5;

and (ii) the stopping condition is satisfied within poly(k) random restarts (via Lemma B.1 and
Lemma C.2) with high probability. We now invoke Lemma B.4 to argue that executing another N
power iterations starting from θN gives a vector θ̂ that satisfies

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

The main difference here, relative to the proof of Theorem 5.1, is that we use κ := 4
√
k (rather

than κ = O(1)), but this ultimately leads to the same guarantee after taking into consideration
the condition ε ≤ C1λmin/k. The remainder of the analysis is essentially the same as the proof of
Theorem 5.1.

D Simultaneous diagonalization for tensor decomposition

As discussed in the introduction, another standard approach to certain tensor decomposition prob-
lems is to simultaneously diagonalize a collection of similar matrices obtained from the given tensor.
We now examine this approach in the context of our latent variable models, where

M2 =

k∑
i=1

wi μi ⊗ μi

M3 =

k∑
i=1

wi μi ⊗ μi ⊗ μi.

Let V := [μ1|μ2| · · · |μk] and D(η) := diag(μ�
1 η, μ

�
2 η, . . . , μ

�
k η), so

M2 = V diag(w1, w2, . . . wk)V
�

M3(I, I, η) = V diag(w1, w2, . . . wk)D(η)V
�

Thus, the problem of determining the μi can be cast as a simultaneous diagonalization problem:
find a matrix X such that X�M2X and X�M3(I, I, η)X (for all η) are diagonal. It is easy to see
that if the μi are linearly independent, then the solution X� = V † is unique up to permutation
and rescaling of the columns.

With exact moments, a simple approach is as follows. Assume for simplicity that d = k, and
define

M(η) :=M3(I, I, η)M
−1
2 = V D(η)V −1.

Observe that if the diagonal entries of D(η) are distinct, then the eigenvectors of M(η) are the
columns of V (up to permutation and scaling). This criterion is satisfied almost surely when η is
chosen randomly from a continuous distribution over Rk.

The above technique (or some variant thereof) was used in [MR06, AHK12, AFH+12, HK12]
to give the efficient learnability results, where the computational and sample complexity bounds
were polynomial in relevant parameters of the problem, including the rank parameter k. However,
the specific polynomial dependence on k was rather large due to the need for the diagonal entries
of D(η) to be well-separated. This is because with finite samples, M(η) is only known up to some
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perturbation, and thus the sample complexity bound depends inversely in (some polynomial of)
the separation of the diagonal entries of D(η). With η drawn uniformly at random from the unit
sphere in Rk, the separation was only guaranteed to be roughly 1/k2.5 [AHK12] (while this may
be a loose estimate, the instability is observed in practice). In contrast, using the tensor power
method to approximately recover V (and hence the model parameters μi and wi) requires only a
mild, lower-order dependence on k.

It should be noted, however, that the use of a single random choice of η is quite restrictive, and it
is easy to see that a simultaneous diagonalization of M(η) for several choices of η can be beneficial.
While the uniqueness of the eigendecomposition of M(η) is only guaranteed when the diagonal
entries of D(η) are distinct, the simultaneous diagonalization of M(η(1)),M(η(2)), . . . ,M(η(m)) for
vectors η(1), η(2), . . . , η(m) is unique as long as the columns of⎡⎢⎢⎢⎣

μ�
1 η

(1) μ�
2 η

(1) · · · μ�
k η

(1)

μ�
1 η

(2) μ�
2 η

(2) · · · μ�
k η

(2)

...
...

. . .
...

μ�
1 η

(m) μ�
2 η

(m) · · · μ�
k η

(m)

⎤⎥⎥⎥⎦
are distinct (i.e., for each pair of column indices i, j, there exists a row index r such that the (r, i)-th
and (r, j)-th entries are distinct). This is a much weaker requirement for uniqueness, and therefore
may translate to an improved perturbation analysis. In fact, using the techniques discussed in
Section 4.3, we may even reduce the problem to an orthogonal simultaneous diagonalization, which
may be easier to obtain. Furthermore, a number of robust numerical methods for (approximately)
simultaneously diagonalizing collections of matrices have been proposed and used successfully in the
literature (e.g., [BGBM93, CS93, Car94, CC96, ZLNM04]). Another alternative and a more stable
approach compared to full diagonalization is a Schur-like method which finds a unitary matrix
U which simultaneously triangularizes the respective matrices [CGT97]. It is an interesting open
question whether these techniques can yield similar improved learnability results and also enjoy the
attractive computational properties of the tensor power method.
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